Basit öğe kaydını göster

dc.contributor.authorPayas, Ahmet
dc.contributor.authorKocaman, Hikmet
dc.contributor.authorYildirim, Hasan
dc.contributor.authorBatin, Sabri
dc.date.accessioned2025-03-28T07:23:36Z
dc.date.available2025-03-28T07:23:36Z
dc.date.issued2024
dc.identifier.issn2572-1143
dc.identifier.urihttps://doi.org/10.1002/jsp2.1355
dc.identifier.urihttps://hdl.handle.net/20.500.12450/6152
dc.description.abstractBackgroundIt is known that neuroanatomical and neurofunctional changes observed in the brain, brainstem and cerebellum play a role in the etiology of adolescent idiopathic scoliosis (AIS). This study aimed to investigate whether volumetric measurements of brain regions can be used as predictive indicators for AIS through machine learning techniques.MethodsPatients with a severe degree of curvature in AIS (n = 32) and healthy individuals (n = 31) were enrolled in the study. Volumetric data from 169 brain regions, acquired from magnetic resonance imaging (MRI) of these individuals, were utilized as predictive factors. A comprehensive analysis was conducted using the twelve most prevalent machine learning algorithms, encompassing thorough parameter adjustments and cross-validation processes. Furthermore, the findings related to variable significance are presented.ResultsAmong all the algorithms evaluated, the random forest algorithm produced the most favorable results in terms of various classification metrics, including accuracy (0.9083), AUC (0.993), f1-score (0.970), and Brier score (0.1256). Additionally, the most critical variables were identified as the volumetric measurements of the right corticospinal tract, right corpus callosum body, right corpus callosum splenium, right cerebellum, and right pons, respectively.ConclusionThe outcomes of this study indicate that volumetric measurements of specific brain regions can serve as reliable indicators of AIS. In conclusion, the developed model and the significant variables discovered hold promise for predicting scoliosis development, particularly in high-risk individuals. Adolescent idiopathic scoliosis does not cause much pain. This may cause scoliosis to progress insidiously and cause late diagnosis. Treatment of advanced scoliosis is both costly and difficult. In this study, we tried to show that scoliosis can be predicted by artificial intelligence using the brain volumes of individuals with scoliosis. imageen_US
dc.description.sponsorshipNone.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.ispartofJor Spineen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectbrainen_US
dc.subjectdiagnosisen_US
dc.subjectmachine learningen_US
dc.subjectmagnetic resonance imagingen_US
dc.subjectscoliosisen_US
dc.titlePrediction of adolescent idiopathic scoliosis with machine learning algorithms using brain volumetric measurementsen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridPAYAS, Ahmet/0000-0002-1629-9794
dc.authoridYILDIRIM, Hasan/0000-0003-4582-9018
dc.authoridbatin, sabri/0000-0002-0078-5122
dc.authoridKocaman, Hikmet/0000-0001-5971-7274
dc.identifier.volume7en_US
dc.identifier.issue3en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85198642334en_US
dc.identifier.doi10.1002/jsp2.1355
dc.department-temp[Payas, Ahmet] Amasya Univ, Fac Med, Dept Anat, 4-3 PK, TR-05100 Amasya, Turkiye; [Kocaman, Hikmet] Karamanoglu Mehmetbey Univ, Fac Hlth Sci, Dept Physiotherapy & Rehabil, Karaman, Turkiye; [Yildirim, Hasan] Univ Karamanoglu Mehmetbey, Fac Kamil Ozdag Sci, Dept Math, Karaman, Turkiye; [Batin, Sabri] Kayseri City Educ & Training Hosp, Dept Orthoped & Traumatol, Kayseri, Turkiyeen_US
dc.identifier.wosWOS:001270859200001en_US
dc.identifier.pmid39011367en_US
dc.snmzKA_WOS_20250328
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster