• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of adolescent idiopathic scoliosis with machine learning algorithms using brain volumetric measurements

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/openAccess

Date

2024

Author

Payas, Ahmet
Kocaman, Hikmet
Yildirim, Hasan
Batin, Sabri

Metadata

Show full item record

Abstract

BackgroundIt is known that neuroanatomical and neurofunctional changes observed in the brain, brainstem and cerebellum play a role in the etiology of adolescent idiopathic scoliosis (AIS). This study aimed to investigate whether volumetric measurements of brain regions can be used as predictive indicators for AIS through machine learning techniques.MethodsPatients with a severe degree of curvature in AIS (n = 32) and healthy individuals (n = 31) were enrolled in the study. Volumetric data from 169 brain regions, acquired from magnetic resonance imaging (MRI) of these individuals, were utilized as predictive factors. A comprehensive analysis was conducted using the twelve most prevalent machine learning algorithms, encompassing thorough parameter adjustments and cross-validation processes. Furthermore, the findings related to variable significance are presented.ResultsAmong all the algorithms evaluated, the random forest algorithm produced the most favorable results in terms of various classification metrics, including accuracy (0.9083), AUC (0.993), f1-score (0.970), and Brier score (0.1256). Additionally, the most critical variables were identified as the volumetric measurements of the right corticospinal tract, right corpus callosum body, right corpus callosum splenium, right cerebellum, and right pons, respectively.ConclusionThe outcomes of this study indicate that volumetric measurements of specific brain regions can serve as reliable indicators of AIS. In conclusion, the developed model and the significant variables discovered hold promise for predicting scoliosis development, particularly in high-risk individuals. Adolescent idiopathic scoliosis does not cause much pain. This may cause scoliosis to progress insidiously and cause late diagnosis. Treatment of advanced scoliosis is both costly and difficult. In this study, we tried to show that scoliosis can be predicted by artificial intelligence using the brain volumes of individuals with scoliosis. image

Volume

7

Issue

3

URI

https://doi.org/10.1002/jsp2.1355
https://hdl.handle.net/20.500.12450/6152

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [458]
  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: