Basit öğe kaydını göster

dc.contributor.authorCavus A.
dc.contributor.authorKarabina A.
dc.contributor.authorKilic E.
dc.date.accessioned2019-09-01T12:50:05Z
dc.date.available2019-09-01T12:50:05Z
dc.date.issued2018
dc.identifier.isbn9781538615010
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2018.8404670
dc.identifier.urihttps://hdl.handle.net/20.500.12450/515
dc.descriptionAselsan;et al.;Huawei;IEEE Signal Processing Society;IEEE Turkey Section;Netasen_US
dc.description26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- 2 May 2018 through 5 May 2018 --en_US
dc.description.abstractClustering is defined as the classification of patterns into groups (clusters) without supervision. The clustering of similarities of data is a complex process that can not be done with human hands. There are various clustering algorithms based on different principles in the literature. The SNN (Shared Nearest Neighborhood) algorithm is a density-based clustering algorithm that identifies similarities between the data by looking at the shared nearest neighbors by two data. The SNN algorithm uses parameters specifying the radius (Eps) that a user enters when clustering, a radius that limits a neighborhood of a point, and the minimum number of points (minPorts) that must be in an eps-neighborhood. This leads to clustering performans has dependency of user experience. A rule-based automatic SNN algorithm has been proposed to remove this dependency from the user. In this study, the performance of the rule-based automatic SNN algorithm over the data sets with 2000 and over sample numbers is examined and presented. © 2018 IEEE.en_US
dc.language.isoturen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/SIU.2018.8404670en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAutomatic SNN algorithmen_US
dc.subjectClusteringen_US
dc.subjectDensity based algorithmen_US
dc.titlePerformance analysis of rule based automatic SNN algorithm on big data sets [Kural tabanli otomatik SNN algoritmasinin büyük veri setleri üzerindeki performans incelemesi]en_US
dc.typeconferenceObjecten_US
dc.relation.journal26th IEEE Signal Processing and Communications Applications Conference, SIU 2018en_US
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.department-tempCavus, A., Rönesans Holding A.Ş, Arge Merkezi, Turkey -- Karabina, A., Amasya Üniversitesi, Bilgisayar Mühendisli?i Bölümü, Turkey -- Kilic, E., Ondokuz Mayis Üniversitesi, Bilgisayar Mühendisli?i Bölümü, Turkeyen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster