• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance analysis of rule based automatic SNN algorithm on big data sets [Kural tabanli otomatik SNN algoritmasinin büyük veri setleri üzerindeki performans incelemesi]

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2018

Yazar

Cavus A.
Karabina A.
Kilic E.

Üst veri

Tüm öğe kaydını göster

Özet

Clustering is defined as the classification of patterns into groups (clusters) without supervision. The clustering of similarities of data is a complex process that can not be done with human hands. There are various clustering algorithms based on different principles in the literature. The SNN (Shared Nearest Neighborhood) algorithm is a density-based clustering algorithm that identifies similarities between the data by looking at the shared nearest neighbors by two data. The SNN algorithm uses parameters specifying the radius (Eps) that a user enters when clustering, a radius that limits a neighborhood of a point, and the minimum number of points (minPorts) that must be in an eps-neighborhood. This leads to clustering performans has dependency of user experience. A rule-based automatic SNN algorithm has been proposed to remove this dependency from the user. In this study, the performance of the rule-based automatic SNN algorithm over the data sets with 2000 and over sample numbers is examined and presented. © 2018 IEEE.

Kaynak

26th IEEE Signal Processing and Communications Applications Conference, SIU 2018

Bağlantı

https://dx.doi.org/10.1109/SIU.2018.8404670
https://hdl.handle.net/20.500.12450/515

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: