Basit öğe kaydını göster

dc.contributor.authorKutlu Onay, Funda
dc.date.accessioned2025-03-28T07:05:19Z
dc.date.available2025-03-28T07:05:19Z
dc.date.issued2024
dc.identifier.issn09410643
dc.identifier.urihttps://hdl.handle.net/20.500.12450/4395
dc.description.abstractThe forensic-based investigation (FBI) is a metaheuristic algorithm inspired by the criminal investigation process. The collaborative efforts of the investigation and pursuit teams demonstrate the FBI’s involvement during the exploitation and exploration phases. When choosing the promising population, the FBI algorithm’s population selection technique focuses on the same region. This research aims to propose a dynamic population selection method for the original FBI and thereby enhance its convergence performance. To achieve this objective, the FBI may employ dynamic oppositional learning (DOL), a dynamic version of the oppositional learning methodology, to dynamically navigate to local minima in various locations. Therefore, the proposed advanced method is named DOLFBI. The performance of DOLFBI on the CEC2019 and CEC2022 benchmark functions is evaluated by comparing it with several other popular metaheuristics in the literature. As a result, DOLFBI yielded the lowest fitness value in 18 of 22 benchmark problems. Furthermore, DOLFBI has shown promising results in solving real-world engineering problems. It can be argued that DOLFBI exhibits the best convergence performance in cantilever beam design, speed reducer, and tension/compression problems. DOLFBI is often utilized in truss engineering difficulties to determine the minimal weight. Its success is comparable to other competitive MAs in the literature. The Wilcoxon signed-rank and Friedman rank tests further confirmed the study’s stability. Convergence and trajectory analyses validate the superior convergence concept of the proposed method. When the proposed study is compared to essential and enhanced MAs, the results show that DOLFBI has a competitive framework for addressing complex optimization problems due to its robust convergence ability compared to other optimization techniques. As a result, DOLFBI is expected to achieve significant success in various optimization challenges, feature selection, and other complex engineering or real-world problems. © The Author(s) 2024.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAKen_US
dc.language.isoengen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofNeural Computing and Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDynamic oppositional based learningen_US
dc.subjectEngineering problemsen_US
dc.subjectForensic-based investigationen_US
dc.subjectMetaheuristicsen_US
dc.subjectTruss topology optimizationen_US
dc.titleSolution of engineering design and truss topology problems with improved forensic-based investigation algorithm based on dynamic oppositional based learningen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume36en_US
dc.identifier.issue20en_US
dc.identifier.startpage12529en_US
dc.identifier.endpage12563en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorKutlu Onay, Funda
dc.identifier.scopus2-s2.0-85191962896en_US
dc.identifier.doi10.1007/s00521-024-09737-4
dc.department-tempKutlu Onay F., Computer Engineering Department, Amasya University, Amasya, 05100, Turkeyen_US
dc.snmzKA_Scopus_20250328
dc.indekslendigikaynakScopusen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster