• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Solution of engineering design and truss topology problems with improved forensic-based investigation algorithm based on dynamic oppositional based learning

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2024

Yazar

Kutlu Onay, Funda

Üst veri

Tüm öğe kaydını göster

Özet

The forensic-based investigation (FBI) is a metaheuristic algorithm inspired by the criminal investigation process. The collaborative efforts of the investigation and pursuit teams demonstrate the FBI’s involvement during the exploitation and exploration phases. When choosing the promising population, the FBI algorithm’s population selection technique focuses on the same region. This research aims to propose a dynamic population selection method for the original FBI and thereby enhance its convergence performance. To achieve this objective, the FBI may employ dynamic oppositional learning (DOL), a dynamic version of the oppositional learning methodology, to dynamically navigate to local minima in various locations. Therefore, the proposed advanced method is named DOLFBI. The performance of DOLFBI on the CEC2019 and CEC2022 benchmark functions is evaluated by comparing it with several other popular metaheuristics in the literature. As a result, DOLFBI yielded the lowest fitness value in 18 of 22 benchmark problems. Furthermore, DOLFBI has shown promising results in solving real-world engineering problems. It can be argued that DOLFBI exhibits the best convergence performance in cantilever beam design, speed reducer, and tension/compression problems. DOLFBI is often utilized in truss engineering difficulties to determine the minimal weight. Its success is comparable to other competitive MAs in the literature. The Wilcoxon signed-rank and Friedman rank tests further confirmed the study’s stability. Convergence and trajectory analyses validate the superior convergence concept of the proposed method. When the proposed study is compared to essential and enhanced MAs, the results show that DOLFBI has a competitive framework for addressing complex optimization problems due to its robust convergence ability compared to other optimization techniques. As a result, DOLFBI is expected to achieve significant success in various optimization challenges, feature selection, and other complex engineering or real-world problems. © The Author(s) 2024.

Cilt

36

Sayı

20

Bağlantı

https://hdl.handle.net/20.500.12450/4395

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: