Basit öğe kaydını göster

dc.contributor.authorOzturk S.
dc.date.accessioned2024-03-12T19:35:25Z
dc.date.available2024-03-12T19:35:25Z
dc.date.issued2021
dc.identifier.isbn9781665440585
dc.identifier.urihttps://doi.org/10.1109/HORA52670.2021.9461320
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2907
dc.description3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, HORA 2021 -- 11 June 2021 through 13 June 2021 -- -- 171163en_US
dc.description.abstractThe fact that the number of images stored continues to increase day by day makes content-based image retrieval (CBIR) systems more important. Considering that almost all of the datasets encountered today are large, it is evident that using the exact nearest neighbor (ENN) search will be inefficient and time-consuming. Therefore, hashing approach, which is seen as the most effective approximate nearest neighbor (ANN) method, is preferred in nearly all retrieval tasks. To learn these binary hash codes, feature extraction, dimension reduction, and binarization steps are generally applied. In this study, the effects of the approaches used in the binarization section on retrieval success are analyzed comparatively. For this purpose, the Kvasir dataset (includes gastrointestinal tract images) and 630 pyramid histograms of oriented gradients (PHOG) features of this dataset are used. First, the dimension of PHOG features is reduced to 16, 32, and 64 bits (usually hash code lengths) using principal component analysis (PCA). Then these different length feature vectors are converted into hash codes by binarization process. Five different threshold methods are used for the binarization process. Binarization is performed by means of techniques such as hard threshold, mean value threshold, adaptive threshold, line mean value, class mean value, total mean value. Finally, the retrieval performances of the hash codes are tested. The performances of the binarization methods are presented comparatively. © 2021 IEEE.en_US
dc.description.sponsorship120E018; Türkiye Bilimsel ve Teknolojik Araştirma Kurumu, TÜBITAKen_US
dc.description.sponsorshipThis research is funded by the Scientific and Technological Research Council of Turkey (TUBlTAK) under grant number 120E018.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofHORA 2021 - 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications, Proceedingsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectbinarizationen_US
dc.subjectCBIRen_US
dc.subjecthashingen_US
dc.subjectPHOGen_US
dc.subjectretrievalen_US
dc.subjectthreshold.en_US
dc.subjectAgricultural robotsen_US
dc.subjectContent based retrievalen_US
dc.subjectHash functionsen_US
dc.subjectHuman computer interactionen_US
dc.subjectLarge dataseten_US
dc.subjectNearest neighbor searchen_US
dc.subjectRoboticsen_US
dc.subjectAdaptive thresholdsen_US
dc.subjectApproximate nearest neighbors (ANN)en_US
dc.subjectBinarization algorithmen_US
dc.subjectContentbased image retrieval (CBIR) systemen_US
dc.subjectDimension reductionen_US
dc.subjectGastrointestinal tracten_US
dc.subjectHistograms of oriented gradientsen_US
dc.subjectRetrieval performanceen_US
dc.subjectSearch enginesen_US
dc.titleDetailed Investigation and Comparison of Various Binarization Algorithms for Hashingen_US
dc.typeconferenceObjecten_US
dc.departmentAmasya Üniversitesien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85114491137en_US
dc.identifier.doi10.1109/HORA52670.2021.9461320
dc.department-tempOzturk, S., Amasya University Electrical and Electronics Engineering, Amasya, Turkeyen_US
dc.authorscopusid57191953654


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster