• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Detailed Investigation and Comparison of Various Binarization Algorithms for Hashing

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Ozturk S.

Üst veri

Tüm öğe kaydını göster

Özet

The fact that the number of images stored continues to increase day by day makes content-based image retrieval (CBIR) systems more important. Considering that almost all of the datasets encountered today are large, it is evident that using the exact nearest neighbor (ENN) search will be inefficient and time-consuming. Therefore, hashing approach, which is seen as the most effective approximate nearest neighbor (ANN) method, is preferred in nearly all retrieval tasks. To learn these binary hash codes, feature extraction, dimension reduction, and binarization steps are generally applied. In this study, the effects of the approaches used in the binarization section on retrieval success are analyzed comparatively. For this purpose, the Kvasir dataset (includes gastrointestinal tract images) and 630 pyramid histograms of oriented gradients (PHOG) features of this dataset are used. First, the dimension of PHOG features is reduced to 16, 32, and 64 bits (usually hash code lengths) using principal component analysis (PCA). Then these different length feature vectors are converted into hash codes by binarization process. Five different threshold methods are used for the binarization process. Binarization is performed by means of techniques such as hard threshold, mean value threshold, adaptive threshold, line mean value, class mean value, total mean value. Finally, the retrieval performances of the hash codes are tested. The performances of the binarization methods are presented comparatively. © 2021 IEEE.

Bağlantı

https://doi.org/10.1109/HORA52670.2021.9461320
https://hdl.handle.net/20.500.12450/2907

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: