• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Efficient Hand Movement Detection Using k-Means Clustering and k-Nearest Neighbor Algorithms

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Bergil E.
Oral C.
Ergul E.U.

Üst veri

Tüm öğe kaydını göster

Özet

Purpose: Electromyography (EMG) signals are commonly used in prosthetic limb studies. We have proposed a system to detect six basic hand movements using unsupervised and supervised classification algorithms. In this study, two-channel EMG recordings belonging to six different hand movements are analyzed and the performance of the wavelet-based features for hand movement clustering and classification are examined for six subjects (three females and three males). Methods: The approximation and detail components are obtained by four-level symmetric wavelet transform. The energy, mean, standard deviation, and entropy values of the wavelet components are calculated and the feature sets are generated. After feature extraction, feature set dimensionality is reduced using principal component analysis, and then the k-nearest neighbor method and k-means clustering are applied for classification and clustering, respectively. The analyses are performed subject-specifically and gender-specifically. Thus, it is possible to evaluate the gender effect on classification performances. Results: Subject-specific hand movements were detected with accuracy in the range of 86.33–100%. Gender-specific hand movements were detected with an accuracy of 96.67% for males and 92.78% for females. Conclusions: The classification and clustering results support each other. It was observed that the samples of hand movements that were classified incorrectly were concentrated in the same clusters. Similarly, it was found that the hand movements that were easily detected were homogeneously clustered. © 2020, Taiwanese Society of Biomedical Engineering.

Cilt

41

Sayı

1

Bağlantı

https://doi.org/10.1007/s40846-020-00537-4
https://hdl.handle.net/20.500.12450/2858

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]

İlgili Öğeler

Başlık, yazar, küratör ve konuya göre gösterilen ilgili öğeler.

  • Classification of vertebral column disorders and lumbar discs disease using attribute weighting algorithm with mean shift clustering 

    Unal, Yavuz; Polat, Kemal; Kocer, H. Erdinc (ELSEVIER SCI LTD, 2016)
    In this article, a new data pre-processing method has been suggested to detect and classify vertebral column disorders and lumbar disc diseases with a high accuracy level. The suggested pre-processing method is called the ...
  • Pairwise FCM based feature weighting for improved classification of vertebral column disorders 

    Unal, Yavuz; Polat, Kemal; Kocer, H. Erdinc (PERGAMON-ELSEVIER SCIENCE LTD, 2014)
    In this paper, an innovative data pre-processing method to improve the classification performance and to determine automatically the vertebral column disorders including disk hernia (DH), spondylolisthesis (SL) and normal ...
  • Performance analysis of rule based automatic SNN algorithm on big data sets [Kural tabanli otomatik SNN algoritmasinin büyük veri setleri üzerindeki performans incelemesi] 

    Cavus A.; Karabina A.; Kilic E. (Institute of Electrical and Electronics Engineers Inc., 2018)
    Clustering is defined as the classification of patterns into groups (clusters) without supervision. The clustering of similarities of data is a complex process that can not be done with human hands. There are various ...



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: