• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

GRAMIAN ANGULAR FIELD TRANSFORMATION-BASED INTRUSION DETECTION

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/openAccess

Date

2022

Author

Terzi, Duygu Sinanc

Metadata

Show full item record

Abstract

Cyber threats are increasing progressively in their frequency, scale, sophistica-tion, and cost. The advancement of such threats has raised the need to enhance intelligent intrusion-detection systems. In this study, a different perspective has been developed for intrusion detection. Gramian angular fields were adapted to encode network traffic data as images. Hereby, a way to reveal bilateral feature relationships and benefit from the visual interpretation capability of deep-learning methods has been opened. Then, image-encoded intrusions were classified as binary and multi-class using convolutional neural networks. The obtained results were compared to both conventional machine-learning methods and related studies. According to the results, the proposed approach surpassed the success of traditional methods and produced success rates that were close to the related studies. Despite the use of complex mechanisms such as fea-ture extraction, feature selection, class balancing, virtual data generation, or ensemble classifiers in related studies, the proposed approach is fairly plain - involving only data-image conversion and classification. This shows the power of simply changing the problem space.

Volume

23

Issue

4

URI

https://doi.org/10.7494/csci.2022.23.4.4406
https://hdl.handle.net/20.500.12450/2790

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: