Basit öğe kaydını göster

dc.contributor.authorTerzi, Duygu Sinanc
dc.date.accessioned2024-03-12T19:35:00Z
dc.date.available2024-03-12T19:35:00Z
dc.date.issued2022
dc.identifier.issn1508-2806
dc.identifier.issn2300-7036
dc.identifier.urihttps://doi.org/10.7494/csci.2022.23.4.4406
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2790
dc.description.abstractCyber threats are increasing progressively in their frequency, scale, sophistica-tion, and cost. The advancement of such threats has raised the need to enhance intelligent intrusion-detection systems. In this study, a different perspective has been developed for intrusion detection. Gramian angular fields were adapted to encode network traffic data as images. Hereby, a way to reveal bilateral feature relationships and benefit from the visual interpretation capability of deep-learning methods has been opened. Then, image-encoded intrusions were classified as binary and multi-class using convolutional neural networks. The obtained results were compared to both conventional machine-learning methods and related studies. According to the results, the proposed approach surpassed the success of traditional methods and produced success rates that were close to the related studies. Despite the use of complex mechanisms such as fea-ture extraction, feature selection, class balancing, virtual data generation, or ensemble classifiers in related studies, the proposed approach is fairly plain - involving only data-image conversion and classification. This shows the power of simply changing the problem space.en_US
dc.language.isoengen_US
dc.publisherAgh Univ Science & Technology Pressen_US
dc.relation.ispartofComputer Science-Aghen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectencoding intrusions as imagesen_US
dc.subjectconvolutional neural networksen_US
dc.subjectGramian angular fieldsen_US
dc.subjectintrusion detectionen_US
dc.subjectnetwork securityen_US
dc.titleGRAMIAN ANGULAR FIELD TRANSFORMATION-BASED INTRUSION DETECTIONen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridSINANC TERZI, DUYGU/0000-0002-3332-9414
dc.identifier.volume23en_US
dc.identifier.issue4en_US
dc.identifier.startpage571en_US
dc.identifier.endpage585en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85143841500en_US
dc.identifier.doi10.7494/csci.2022.23.4.4406
dc.department-temp[Terzi, Duygu Sinanc] Amasya Univ, Dept Comp Engn, Amasya, Turkeyen_US
dc.identifier.wosWOS:000886232600005en_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster