Basit öğe kaydını göster

dc.contributor.authorKonakoglu, Berkant
dc.contributor.authorAkar, Alper
dc.date.accessioned2024-03-12T19:30:04Z
dc.date.available2024-03-12T19:30:04Z
dc.date.issued2021
dc.identifier.issn1214-9705
dc.identifier.urihttps://doi.org/10.13168/AGG.2021.0001
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2473
dc.description.abstractIn order to convert ellipsoidal heights obtained by the Global Navigation Satellite System (GNSS) to orthometric heights, it is necessary to know the distance between the ellipsoidal and geoid surface, called the geoid undulation. The geoid undulation can be predicted using emerging mathematics tools and algorithms. The objective of this study was to develop a model for predicting the geoid undulation using Gaussian Process Regression (GPR), one of the soft machine learning algorithms having different covariance functions. This method was then compared with the radial basis function neural network (RBFNN), generalized regression neural network (GRNN), and the interpolation method of inverse distance to a power (IDP) with the power of 1, 2, 3, 4, and 5. First, 70 % of GNSS/leveling data (422 points) were used in the training phase. The remaining 185 points were used as testing data to check the effectiveness of the constructed model. In the GPR modeling, ten covariance functions (Materniso d = 1, 3, 5; Maternard d = 1, 3, 5; SEiso; SEard; RQiso; and RQard) were tested for prediction on this dataset. The GPR based on the Materniso (d = 1) covariance function model was introduced as an effective method for predicting geoid undulation and provided the best results (RMSE = 8.32 cm, MAE = 5.51 cm, R-2 = 0.98968) when compared with the other developed GPR models. In addition, the statistical findings showed that the accuracy of all the GPR models was also better in predicting geoid undulation than the RBFNN, GRNN, and IDP with the power of 1, 2, 3, 4, and 5.en_US
dc.language.isoengen_US
dc.publisherAcad Sci Czech Republic Inst Rock Structure & Mechanicsen_US
dc.relation.ispartofActa Geodynamica Et Geomaterialiaen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGaussian Process Regressionen_US
dc.subjectGeneralized regression neural networken_US
dc.subjectGeoiden_US
dc.subjectGNSS/levelingen_US
dc.subjectRadial basis function neural networken_US
dc.subjectInverse distance to a poweren_US
dc.titleGEOID UNDULATION PREDICTION USING GAUSSIAN PROCESSES REGRESSION: A CASE STUDY IN A LOCAL REGION IN TURKEYen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridKonakoglu, Berkant/0000-0002-8276-587X
dc.identifier.volume18en_US
dc.identifier.issue1en_US
dc.identifier.startpage15en_US
dc.identifier.endpage28en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85103452387en_US
dc.identifier.doi10.13168/AGG.2021.0001
dc.department-temp[Konakoglu, Berkant] Amasya Univ, Tech Sci Vocat Sch, Dept Architecture & Urban Planning, Amasya, Turkey; [Akar, Alper] Erzincan Binali Yildirim Univ, Vocat Sch, Dept Architecture & Urban Planning, Erzincan, Turkeyen_US
dc.identifier.wosWOS:000637569400002en_US
dc.authorwosidKonakoglu, Berkant/GQB-2641-2022


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster