Basit öğe kaydını göster

dc.contributor.authorParlak, Bekir
dc.contributor.authorUysal, Alper Kursat
dc.date.accessioned2024-03-12T19:29:57Z
dc.date.available2024-03-12T19:29:57Z
dc.date.issued2023
dc.identifier.issn0165-5515
dc.identifier.issn1741-6485
dc.identifier.urihttps://doi.org/10.1177/0165551521991037
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2446
dc.description.abstractAs the huge dimensionality of textual data restrains the classification accuracy, it is essential to apply feature selection (FS) methods as dimension reduction step in text classification (TC) domain. Most of the FS methods for TC contain several number of probabilities. In this study, we proposed a new FS method named as Extensive Feature Selector (EFS), which benefits from corpus-based and class-based probabilities in its calculations. The performance of EFS is compared with nine well-known FS methods, namely, Chi-Squared (CHI2), Class Discriminating Measure (CDM), Discriminative Power Measure (DPM), Odds Ratio (OR), Distinguishing Feature Selector (DFS), Comprehensively Measure Feature Selection (CMFS), Discriminative Feature Selection (DFSS), Normalised Difference Measure (NDM) and Max-Min Ratio (MMR) using Multinomial Naive Bayes (MNB), Support-Vector Machines (SVMs) and k-Nearest Neighbour (KNN) classifiers on four benchmark data sets. These data sets are Reuters-21578, 20-Newsgroup, Mini 20-Newsgroup and Polarity. The experiments were carried out for six different feature sizes which are 10, 30, 50, 100, 300 and 500. Experimental results show that the performance of EFS method is more successful than the other nine methods in most cases according to micro-F1 and macro-F1 scores.en_US
dc.language.isoengen_US
dc.publisherSage Publications Ltden_US
dc.relation.ispartofJournal Of Information Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDimension reductionen_US
dc.subjectfeature selectionen_US
dc.subjecttext classificationen_US
dc.titleA novel filter feature selection method for text classification: Extensive Feature Selectoren_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridUysal, Alper Kursat/0000-0002-4057-934X;
dc.identifier.volume49en_US
dc.identifier.issue1en_US
dc.identifier.startpage59en_US
dc.identifier.endpage78en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85104287630en_US
dc.identifier.doi10.1177/0165551521991037
dc.department-temp[Parlak, Bekir] Amasya Univ, Dept Comp Engn, Fac Technol, Yesilirmak Campus, TR-05100 Amasya, Turkey; [Uysal, Alper Kursat] Canakkale Onsekiz Mart Univ, Fac Engn, Dept Comp Engn, Canakkale, Turkeyen_US
dc.identifier.wosWOS:000641912500001en_US
dc.authorwosidUysal, Alper Kursat/P-3089-2019
dc.authorwosidPARLAK, Bekir/IXM-9534-2023


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster