• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel filter feature selection method for text classification: Extensive Feature Selector

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2023

Yazar

Parlak, Bekir
Uysal, Alper Kursat

Üst veri

Tüm öğe kaydını göster

Özet

As the huge dimensionality of textual data restrains the classification accuracy, it is essential to apply feature selection (FS) methods as dimension reduction step in text classification (TC) domain. Most of the FS methods for TC contain several number of probabilities. In this study, we proposed a new FS method named as Extensive Feature Selector (EFS), which benefits from corpus-based and class-based probabilities in its calculations. The performance of EFS is compared with nine well-known FS methods, namely, Chi-Squared (CHI2), Class Discriminating Measure (CDM), Discriminative Power Measure (DPM), Odds Ratio (OR), Distinguishing Feature Selector (DFS), Comprehensively Measure Feature Selection (CMFS), Discriminative Feature Selection (DFSS), Normalised Difference Measure (NDM) and Max-Min Ratio (MMR) using Multinomial Naive Bayes (MNB), Support-Vector Machines (SVMs) and k-Nearest Neighbour (KNN) classifiers on four benchmark data sets. These data sets are Reuters-21578, 20-Newsgroup, Mini 20-Newsgroup and Polarity. The experiments were carried out for six different feature sizes which are 10, 30, 50, 100, 300 and 500. Experimental results show that the performance of EFS method is more successful than the other nine methods in most cases according to micro-F1 and macro-F1 scores.

Cilt

49

Sayı

1

Bağlantı

https://doi.org/10.1177/0165551521991037
https://hdl.handle.net/20.500.12450/2446

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: