• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel filter feature selection method for text classification: Extensive Feature Selector

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2023

Author

Parlak, Bekir
Uysal, Alper Kursat

Metadata

Show full item record

Abstract

As the huge dimensionality of textual data restrains the classification accuracy, it is essential to apply feature selection (FS) methods as dimension reduction step in text classification (TC) domain. Most of the FS methods for TC contain several number of probabilities. In this study, we proposed a new FS method named as Extensive Feature Selector (EFS), which benefits from corpus-based and class-based probabilities in its calculations. The performance of EFS is compared with nine well-known FS methods, namely, Chi-Squared (CHI2), Class Discriminating Measure (CDM), Discriminative Power Measure (DPM), Odds Ratio (OR), Distinguishing Feature Selector (DFS), Comprehensively Measure Feature Selection (CMFS), Discriminative Feature Selection (DFSS), Normalised Difference Measure (NDM) and Max-Min Ratio (MMR) using Multinomial Naive Bayes (MNB), Support-Vector Machines (SVMs) and k-Nearest Neighbour (KNN) classifiers on four benchmark data sets. These data sets are Reuters-21578, 20-Newsgroup, Mini 20-Newsgroup and Polarity. The experiments were carried out for six different feature sizes which are 10, 30, 50, 100, 300 and 500. Experimental results show that the performance of EFS method is more successful than the other nine methods in most cases according to micro-F1 and macro-F1 scores.

Volume

49

Issue

1

URI

https://doi.org/10.1177/0165551521991037
https://hdl.handle.net/20.500.12450/2446

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: