Basit öğe kaydını göster

dc.contributor.authorAlenezi, Fayadh
dc.contributor.authorArmghan, Ammar
dc.contributor.authorAlharbi, Abdullah G.
dc.contributor.authorOzturk, Saban
dc.contributor.authorAlthubiti, Sara A.
dc.contributor.authorMansour, Romany F.
dc.date.accessioned2024-03-12T19:29:09Z
dc.date.available2024-03-12T19:29:09Z
dc.date.issued2023
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2023.120856
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2212
dc.description.abstractUnderwater imaging poses significant challenges as water alters the behavior of light in comparison to air or vacuum. Therefore, it is crucial to effectively utilize the unique characteristics of unclear edges in hazy underwater images to achieve high-performance results in real-time applications. In this paper, we exploit such features as edges and visual perception in underwater haze images. To achieve this, we estimate the true transmission of the image by enhancing the visibility of discontinuous edges using the reverse gamma correction based on the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. The parameters of the GARCH model are defined by the local and global pixel dynamics in adjacent neighborhoods, which improves the color orientation of the image while preserving image details. Additionally, we perform deseasoning to separate pixels while maintaining the natural contours of interactions between them. By considering the volatility of the RGB color channels, we predict the variance of the pixels based on the difference of the deseasoned pixels, which improves pixel intensity and allows for scene depth estimation. While estimating gamma correction and global ambient light, we deseasonalize image pixels based on their colors, enhancing the color of the final dehazed images. Using the greedy algorithm with a Convolutional Neural Network (CNN), our proposed method outperforms commonly used state-of-the-art methods.en_US
dc.description.sponsorshipDeanship of Scientific Research at Jouf University, Saudi Arabia [DSR2022-RG-0112]en_US
dc.description.sponsorshipAcknowledgments This work was funded by the Deanship of Scientific Research at Jouf University, Saudi Arabia under Grant Number (DSR2022-RG-0112) . All authors read and approved the final manuscript.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.ispartofExpert Systems With Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectUnderwater image dehazingen_US
dc.subjectRGB color wavelengthen_US
dc.subjectDeseasonen_US
dc.subjectAmbient global underwater lighten_US
dc.subjectScene depthen_US
dc.titleReverse gamma correction based GARCH model for underwater image dehazing and detail exposureen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridArmghan, Ammar/0000-0002-9062-7493
dc.authoridAlharbi, Abdullah G./0000-0002-1972-4741;
dc.identifier.volume232en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85163888823en_US
dc.identifier.doi10.1016/j.eswa.2023.120856
dc.department-temp[Alenezi, Fayadh; Armghan, Ammar; Alharbi, Abdullah G.] Jouf Univ Sakaka, Fac Engn, Dept Elect Engn, Al Jawf 72388, Saudi Arabia; [Ozturk, Saban] Amasya Univ, Fac Engn, Dept Elect & Elect Engn, Amasya, Turkiye; [Althubiti, Sara A.] Majmaah Univ, Coll Comp & Informat Sci, Dept Comp Sci, Al Majmaah 11952, Saudi Arabia; [Mansour, Romany F.] New Valley Univ, Fac Sci, Dept Math, El Kharga 72511, Egypten_US
dc.identifier.wosWOS:001032417600001en_US
dc.authorwosidArmghan, Ammar/ABA-9560-2021
dc.authorwosidAlharbi, Abdullah G./AFN-5483-2022
dc.authorwosidAlharbi, Abdullah M./JUV-2886-2023


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster