• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reverse gamma correction based GARCH model for underwater image dehazing and detail exposure

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2023

Author

Alenezi, Fayadh
Armghan, Ammar
Alharbi, Abdullah G.
Ozturk, Saban
Althubiti, Sara A.
Mansour, Romany F.

Metadata

Show full item record

Abstract

Underwater imaging poses significant challenges as water alters the behavior of light in comparison to air or vacuum. Therefore, it is crucial to effectively utilize the unique characteristics of unclear edges in hazy underwater images to achieve high-performance results in real-time applications. In this paper, we exploit such features as edges and visual perception in underwater haze images. To achieve this, we estimate the true transmission of the image by enhancing the visibility of discontinuous edges using the reverse gamma correction based on the Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. The parameters of the GARCH model are defined by the local and global pixel dynamics in adjacent neighborhoods, which improves the color orientation of the image while preserving image details. Additionally, we perform deseasoning to separate pixels while maintaining the natural contours of interactions between them. By considering the volatility of the RGB color channels, we predict the variance of the pixels based on the difference of the deseasoned pixels, which improves pixel intensity and allows for scene depth estimation. While estimating gamma correction and global ambient light, we deseasonalize image pixels based on their colors, enhancing the color of the final dehazed images. Using the greedy algorithm with a Convolutional Neural Network (CNN), our proposed method outperforms commonly used state-of-the-art methods.

Volume

232

URI

https://doi.org/10.1016/j.eswa.2023.120856
https://hdl.handle.net/20.500.12450/2212

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: