Basit öğe kaydını göster

dc.contributor.authorBasaran, Bogachan
dc.contributor.authorKalkan, Ilker
dc.contributor.authorBergil, Erhan
dc.contributor.authorErdal, Erdal
dc.date.accessioned2024-03-12T19:29:06Z
dc.date.available2024-03-12T19:29:06Z
dc.date.issued2021
dc.identifier.issn0263-8223
dc.identifier.issn1879-1085
dc.identifier.urihttps://doi.org/10.1016/j.compstruct.2021.113972
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2188
dc.description.abstractThe present study pertains to the bond strength and development length of FRP bars embedded in concrete. The experimental results in the literature were compared to the analytical estimates from the equations of different international codes and machine learning techniques, i.e. Gaussian Process Regression, Artificial Neural Networks, Support Vector Machines Regression, Regression Tree and Multiple Linear Regression. The comparison was realized for four different experimental methods, i.e. hinged beam, beam-end, spliced beam and pullout, to specify the analytical equation or method with the highest agreement with the test results for each method. GPR method was found to provide the highest accuracy with a mean value of 0.95 and a standard deviation of 0.14 for the predicted-to-experimental bond strength ratio. Based on coefficient of determination, Root Mean Square Error and Mean Absolute Percentage Error statistical criteria, GRP method was followed by ANN, MLR and SVMR based on the agreement with the experimental results. Among the code equations, the bond strength equation of the ACI 440.1R-15 code resulted in highest agreement with experimental results, but the predicted values remained on the over-conservative side. The other code formulations were established to yield to estimates, nearly constant for varying test parameters and highly conservative.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofComposite Structuresen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFRP reinforcementen_US
dc.subjectMachine learningen_US
dc.subjectBond strengthen_US
dc.subjectDevelopment lengthen_US
dc.subjectFRP-concrete bonden_US
dc.subjectMechanical inter-lockingen_US
dc.subjectFrictionen_US
dc.titleEstimation of the FRP-concrete bond strength with code formulations and machine learning algorithmsen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridKalkan, Ilker/0000-0002-5987-631X
dc.authoridERDAL, Erdal/0000-0003-1174-1974
dc.authoridBAŞARAN, BOĞAÇHAN/0000-0002-5289-8436
dc.identifier.volume268en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85104777739en_US
dc.identifier.doi10.1016/j.compstruct.2021.113972
dc.department-temp[Basaran, Bogachan] Amasya Univ, Vocat Sch Tech Sci, Dept Construct, Amasya, Turkey; [Kalkan, Ilker] Kirikkale Univ, Fac Engn & Architecture, Dept Civil Engn, Kirikkale, Turkey; [Bergil, Erhan] Amasya Univ, Dept Elect Elect Engn, Fac Technol, Amasya, Turkey; [Erdal, Erdal] Kirikkale Univ, Dept Comp Engn, Fac Engn & Architecture, Kirikkale, Turkeyen_US
dc.identifier.wosWOS:000655560200005en_US
dc.authorwosidKalkan, Ilker/AAA-1978-2021
dc.authorwosidERDAL, Erdal/J-9466-2019
dc.authorwosidBAŞARAN, BOĞAÇHAN/AAY-5249-2021


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster