• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of the FRP-concrete bond strength with code formulations and machine learning algorithms

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Basaran, Bogachan
Kalkan, Ilker
Bergil, Erhan
Erdal, Erdal

Üst veri

Tüm öğe kaydını göster

Özet

The present study pertains to the bond strength and development length of FRP bars embedded in concrete. The experimental results in the literature were compared to the analytical estimates from the equations of different international codes and machine learning techniques, i.e. Gaussian Process Regression, Artificial Neural Networks, Support Vector Machines Regression, Regression Tree and Multiple Linear Regression. The comparison was realized for four different experimental methods, i.e. hinged beam, beam-end, spliced beam and pullout, to specify the analytical equation or method with the highest agreement with the test results for each method. GPR method was found to provide the highest accuracy with a mean value of 0.95 and a standard deviation of 0.14 for the predicted-to-experimental bond strength ratio. Based on coefficient of determination, Root Mean Square Error and Mean Absolute Percentage Error statistical criteria, GRP method was followed by ANN, MLR and SVMR based on the agreement with the experimental results. Among the code equations, the bond strength equation of the ACI 440.1R-15 code resulted in highest agreement with experimental results, but the predicted values remained on the over-conservative side. The other code formulations were established to yield to estimates, nearly constant for varying test parameters and highly conservative.

Cilt

268

Bağlantı

https://doi.org/10.1016/j.compstruct.2021.113972
https://hdl.handle.net/20.500.12450/2188

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: