dc.contributor.author | Ozkaya, Umut | |
dc.contributor.author | Ozturk, Saban | |
dc.contributor.author | Melgani, Farid | |
dc.contributor.author | Seyfi, Levent | |
dc.date.accessioned | 2024-03-12T19:29:03Z | |
dc.date.available | 2024-03-12T19:29:03Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0926-5805 | |
dc.identifier.issn | 1872-7891 | |
dc.identifier.uri | https://doi.org/10.1016/j.autcon.2020.103525 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/2168 | |
dc.description.abstract | In this study, the residual Convolutional Neural Network (CNN) with the Bidirectional Long Short Time Memory (Bi-LSTM) model has proposed for the analysis of Ground Penetrating Radar B scan (GPR B Scan) images. GPR characteristics, scanning frequency, and soil type make it very difficult to analyze GPR B Scan images. Also, noise and clutter in the image make this problem more challenging. The proposed method shows high performance in determining the scanning frequency of GPR B Scan images, type of GPR device, and the type of soil. In particular, residual structures and types of Bi-LSTMs connection within the proposed method led to increasing the performance. The metric performance of the proposed method is higher compared to other transfer learning based CNN structures. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Automation In Construction | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | GPR | en_US |
dc.subject | CNN | en_US |
dc.subject | Bi-LSTM | en_US |
dc.subject | Residual connections | en_US |
dc.title | Residual CNN plus Bi-LSTM model to analyze GPR B scan images | en_US |
dc.type | article | en_US |
dc.department | Amasya Üniversitesi | en_US |
dc.authorid | Seyfi, Levent/0000-0002-8698-5140 | |
dc.authorid | Öztürk, Şaban/0000-0003-2371-8173 | |
dc.identifier.volume | 123 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85098545669 | en_US |
dc.identifier.doi | 10.1016/j.autcon.2020.103525 | |
dc.department-temp | [Ozkaya, Umut; Seyfi, Levent] Konya Tech Univ, Dept Elect & Elect Engn, Konya, Turkey; [Ozturk, Saban] Amasya Univ, Dept Elect & Elect Engn, Amasya, Turkey; [Melgani, Farid] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy | en_US |
dc.identifier.wos | WOS:000614760700002 | en_US |
dc.authorwosid | Seyfi, Levent/E-7139-2016 | |
dc.authorwosid | Öztürk, Şaban/ABI-3936-2020 | |