Basit öğe kaydını göster

dc.contributor.authorOzkaya, Umut
dc.contributor.authorOzturk, Saban
dc.contributor.authorMelgani, Farid
dc.contributor.authorSeyfi, Levent
dc.date.accessioned2024-03-12T19:29:03Z
dc.date.available2024-03-12T19:29:03Z
dc.date.issued2021
dc.identifier.issn0926-5805
dc.identifier.issn1872-7891
dc.identifier.urihttps://doi.org/10.1016/j.autcon.2020.103525
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2168
dc.description.abstractIn this study, the residual Convolutional Neural Network (CNN) with the Bidirectional Long Short Time Memory (Bi-LSTM) model has proposed for the analysis of Ground Penetrating Radar B scan (GPR B Scan) images. GPR characteristics, scanning frequency, and soil type make it very difficult to analyze GPR B Scan images. Also, noise and clutter in the image make this problem more challenging. The proposed method shows high performance in determining the scanning frequency of GPR B Scan images, type of GPR device, and the type of soil. In particular, residual structures and types of Bi-LSTMs connection within the proposed method led to increasing the performance. The metric performance of the proposed method is higher compared to other transfer learning based CNN structures.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofAutomation In Constructionen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGPRen_US
dc.subjectCNNen_US
dc.subjectBi-LSTMen_US
dc.subjectResidual connectionsen_US
dc.titleResidual CNN plus Bi-LSTM model to analyze GPR B scan imagesen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridSeyfi, Levent/0000-0002-8698-5140
dc.authoridÖztürk, Şaban/0000-0003-2371-8173
dc.identifier.volume123en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85098545669en_US
dc.identifier.doi10.1016/j.autcon.2020.103525
dc.department-temp[Ozkaya, Umut; Seyfi, Levent] Konya Tech Univ, Dept Elect & Elect Engn, Konya, Turkey; [Ozturk, Saban] Amasya Univ, Dept Elect & Elect Engn, Amasya, Turkey; [Melgani, Farid] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italyen_US
dc.identifier.wosWOS:000614760700002en_US
dc.authorwosidSeyfi, Levent/E-7139-2016
dc.authorwosidÖztürk, Şaban/ABI-3936-2020


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster