• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Residual CNN plus Bi-LSTM model to analyze GPR B scan images

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Ozkaya, Umut
Ozturk, Saban
Melgani, Farid
Seyfi, Levent

Üst veri

Tüm öğe kaydını göster

Özet

In this study, the residual Convolutional Neural Network (CNN) with the Bidirectional Long Short Time Memory (Bi-LSTM) model has proposed for the analysis of Ground Penetrating Radar B scan (GPR B Scan) images. GPR characteristics, scanning frequency, and soil type make it very difficult to analyze GPR B Scan images. Also, noise and clutter in the image make this problem more challenging. The proposed method shows high performance in determining the scanning frequency of GPR B Scan images, type of GPR device, and the type of soil. In particular, residual structures and types of Bi-LSTMs connection within the proposed method led to increasing the performance. The metric performance of the proposed method is higher compared to other transfer learning based CNN structures.

Cilt

123

Bağlantı

https://doi.org/10.1016/j.autcon.2020.103525
https://hdl.handle.net/20.500.12450/2168

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: