Basit öğe kaydını göster

dc.contributor.authorSari, Murat
dc.contributor.authorYalcin, Ibrahim Ertugrul
dc.contributor.authorTaner, Mahmut
dc.contributor.authorCosgun, Tahir
dc.contributor.authorOzyigit, Ibrahim Ilker
dc.date.accessioned2024-03-12T19:28:52Z
dc.date.available2024-03-12T19:28:52Z
dc.date.issued2023
dc.identifier.issn0167-6369
dc.identifier.issn1573-2959
dc.identifier.urihttps://doi.org/10.1007/s10661-023-11050-x
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2084
dc.description.abstractThis paper aims to predict heavy metal pollution based on ecological factors with a new approach, using artificial neural networks (ANNs), by significantly removing typical obstacles like time-consuming laboratory procedures and high implementation costs. Pollution prediction is crucial for the safety of all living things, for sustainable development, and for policymakers to make the right decisions. This study focuses on predicting heavy metal contamination in an ecosystem at a significantly lower cost because pollution assessment still primarily relies on conventional methods, which are recognized to have disadvantages. To accomplish this, the data collected for 800 plant and soil materials have been utilized in the production of an ANN. This research is the first to use an ANN to predict pollution very accurately and has found the network models to be very suitable systemic tools for modelling in pollution data analysis. The findings appear are promising to be very illuminating and pioneering for scientists, conservationists, and governments to swiftly and optimally develop their appropriate work programs to leave a functioning ecosystem for all living things. It has been observed that the relative errors calculated for each of the polluting heavy metals for training, testing, and holdout data are significantly low.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofEnvironmental Monitoring And Assessmenten_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEnvironmental pollutionen_US
dc.subjectCadmiumen_US
dc.subjectChromiumen_US
dc.subjectLeaden_US
dc.subjectNeural network modelen_US
dc.titleForecasting contamination in an ecosystem based on a network modelen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridYalcin, Ibrahim Ertugrul/0000-0003-3140-7922
dc.authoridCosgun, Tahir/0000-0003-2970-0863
dc.authoridOzyigit, Ibrahim Ilker/0000-0002-0825-5951
dc.authoridTANER, Mahmut/0000-0002-2838-3651
dc.identifier.volume195en_US
dc.identifier.issue5en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85151791943en_US
dc.identifier.doi10.1007/s10661-023-11050-x
dc.department-temp[Sari, Murat] Istanbul Tech Univ, Fac Sci & Letters, Math Engn, TR-34469 Istanbul, Turkiye; [Yalcin, Ibrahim Ertugrul] Bahcesehir Univ, Fac Engn & Nat Sci, Dept Civil Engn, TR-34353 Istanbul, Turkiye; [Taner, Mahmut] Istanbul Gelisim Univ, Dept Web Design & Dev, TR-34310 Istanbul, Turkiye; [Cosgun, Tahir] Amasya Univ, Fac Arts & Sci, Dept Math, TR-05100 Amasya, Turkiye; [Ozyigit, Ibrahim Ilker] Marmara Univ, Fac Sci, Dept Biol, TR-34722 Istanbul, Turkiyeen_US
dc.identifier.wosWOS:000962872500004en_US
dc.identifier.pmid37010616en_US
dc.authorwosidYalcin, Ibrahim Ertugrul/AAM-9848-2021
dc.authorwosidCosgun, Tahir/GSN-0899-2022


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster