• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An improved chicken swarm optimization algorithm for extracting the optimal parameters of proton exchange membrane fuel cells

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2022

Author

Ayvaz, Alisan

Metadata

Show full item record

Abstract

In this study, an improved variant of chicken swarm optimization (CSO), named I-CSO, is proposed to find the unknown parameters of the proton exchange membrane fuel cell (PEMFC) models. Although the basic CSO has a well-established population hierarchy mechanism that gives it an important advantage over its competitors, it suffers from premature convergence and can be easily trapped into the local optima because of inadequate use of population information in the update rule of the rooster's position. In the proposed I-CSO, this shortcoming is addressed by introducing a new learning strategy for the roosters, which play leadership roles in the foraging behavior of the chicken swarm, to improve the algorithm convergence capability. Moreover, an adaptive inertia weight is introduced to make the algorithm more stable by striking a better balance between the exploration and exploitation phase. The sum of absolute error between the actual and estimated voltage outputs of the stack is suggested as the objective function to perform the optimization. Besides the suggested one, two other objective functions are also used to evaluate the impact of objective function choice on the optimization results. The test of the method is performed on two commercial PEMFCs, which are BCS 500-W Stack and NedStack PS6, and the results of I-CSO are compared with those of other competitive algorithms published in the literature. The final results show that the use of the proposed I-CSO with the suggested objective function demonstrates excellent performance in estimating the PEMFC model parameters with fewer errors.

Volume

46

Issue

11

URI

https://doi.org/10.1002/er.8208
https://hdl.handle.net/20.500.12450/2038

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: