Basit öğe kaydını göster

dc.contributor.authorAyvaz, Alisan
dc.date.accessioned2024-03-12T19:28:47Z
dc.date.available2024-03-12T19:28:47Z
dc.date.issued2022
dc.identifier.issn0363-907X
dc.identifier.issn1099-114X
dc.identifier.urihttps://doi.org/10.1002/er.8208
dc.identifier.urihttps://hdl.handle.net/20.500.12450/2038
dc.description.abstractIn this study, an improved variant of chicken swarm optimization (CSO), named I-CSO, is proposed to find the unknown parameters of the proton exchange membrane fuel cell (PEMFC) models. Although the basic CSO has a well-established population hierarchy mechanism that gives it an important advantage over its competitors, it suffers from premature convergence and can be easily trapped into the local optima because of inadequate use of population information in the update rule of the rooster's position. In the proposed I-CSO, this shortcoming is addressed by introducing a new learning strategy for the roosters, which play leadership roles in the foraging behavior of the chicken swarm, to improve the algorithm convergence capability. Moreover, an adaptive inertia weight is introduced to make the algorithm more stable by striking a better balance between the exploration and exploitation phase. The sum of absolute error between the actual and estimated voltage outputs of the stack is suggested as the objective function to perform the optimization. Besides the suggested one, two other objective functions are also used to evaluate the impact of objective function choice on the optimization results. The test of the method is performed on two commercial PEMFCs, which are BCS 500-W Stack and NedStack PS6, and the results of I-CSO are compared with those of other competitive algorithms published in the literature. The final results show that the use of the proposed I-CSO with the suggested objective function demonstrates excellent performance in estimating the PEMFC model parameters with fewer errors.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.ispartofInternational Journal Of Energy Researchen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectoptimization methodsen_US
dc.subjectparameter estimationen_US
dc.subjectPEM fuel cellsen_US
dc.subjectsum absolute voltage erroren_US
dc.titleAn improved chicken swarm optimization algorithm for extracting the optimal parameters of proton exchange membrane fuel cellsen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridAyvaz, Alisan/0000-0001-6449-6541
dc.identifier.volume46en_US
dc.identifier.issue11en_US
dc.identifier.startpage15081en_US
dc.identifier.endpage15098en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85131761835en_US
dc.identifier.doi10.1002/er.8208
dc.department-temp[Ayvaz, Alisan] Amasya Univ, Dept Elect & Elect Engn, TR-05100 Amasya, Turkeyen_US
dc.identifier.wosWOS:000810057000001en_US
dc.authorwosidAyvaz, Alisan/JFA-5189-2023


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster