• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heat transfer enhancement using U-shaped flow routing plates in cooling printed circuit boards

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2018

Author

Kursun, Burak
Sivrioglu, Mecit

Metadata

Show full item record

Abstract

This study presents a numerical investigation on the effect of the U-shaped flow routing plate to laminar mixed convection heat transfer from protruded heat sources at the side walls of a horizontal channel. The air was used as a cooling fluid and protruded heat sources were equipped as 4 x 8 rows into the rectangular channel with insulated walls. Numerical investigations are carried out for the plate width/channel width ratio (L-P/W) of 3/20, 1/10, 1/20 and plate angles (alpha) of 0 degrees, 30 degrees, 60 degrees at different Reynolds (Re), modified Grashof (Gr*) and Richardson (Ri) numbers. In the study, periodic plate placement was analyzed numerically and the effects of a plate placement array on heat transfer enhancement were investigated. The highest heat transfer enhancement (180%) was observed for the values of alpha = 30 degrees L-P/W = 3/20 at all the Re, Gr* and Ri number values. The predominance of natural convection increases the use of the flow routing plate effectiveness but causes a decrease in the heat transfer enhancement after a certain number of Ri. Therefore, the increase in natural convection needs to be controlled. Theoretical fan power (N-fan) requirements due to pressure loss are also investigated. Depending on the parameters used in the numerical study, as a result of the plate usage, the pressure losses increased according to the case without a plate. It is observed that the most important factor affecting the pressure loss was the Re number and this case indicated that the plate placement was more appropriate for low values of Re. The findings obtained during the numerical studies were presented in detail as graphics of the row averaged Nusselt number (Nu(row ave.)) and the heater temperatures, surface stream lines, and temperature contours.

Source

JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING

Volume

40

Issue

1

URI

https://dx.doi.org/10.1007/s40430-017-0937-z
https://hdl.handle.net/20.500.12450/976

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: