• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using of Fresh Cadaveric Cow Brain in the Microsurgical Training Model for Sulcal-Cisternal and Fissural Dissection

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/openAccess

Date

2018

Author

Gokyar, Ahmet
Cokluk, Cengiz

Metadata

Show full item record

Abstract

Objective: The aim of this experimental study was to evaluate the feasibility of using fresh cadaveric cow brain as in a training model for microsurgical dissection of sulcus, cisterns, and fissure. Methods: Experimental microneurosurgical activities in this study were performed under the operating microscope. Bilateral sylvian cisterns, interhemispheric fissure, and hemispheric sulcus of the fresh cadaveric cow brain were used as an interested area for this experimental study. The dissection was continued reaching down to the floor of the cistern and total dissection of the middle cerebral artery inside the cisternal space. The suitability of a cow brain as a training model for sylvian fissure microdissection was evaluated as three groups; bad, good, and perfect. Results: Ten uncovered fresh cadaveric cow brains were used in this experimental feasibility study. The suitability of the experiment for training model was evaluated as bad in (1) 10% of the fresh cadaveric cow brains. The suitability was found as good in (6) 60% of the procedures. In the remaining (3) 30% of the brain dissection, the suitability of the experiment was evaluated as perfect. Conclusion: In conclusion, performing the sulcal, cisternal, and fissural dissection and protecting the neural and vascular tissue from the mechanical bruising effect of metallic microsurgical instruments are feasible as shown in this study. We believe that this training model will contribute to the practical micro-neurosurgery. Additionally, it provides adequate performance for the microsurgical intervention.

Source

JOURNAL OF NEUROSCIENCES IN RURAL PRACTICE

Volume

9

Issue

1

URI

https://dx.doi.org/10.4103/jnrp.jnrp_390_17
https://hdl.handle.net/20.500.12450/975

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: