• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of Predictive Capabilities of Regression Models and Artificial Neural Networks for Density and Viscosity Measurements of Different Biodiesel-Diesel-Vegetable Oil Ternary Blends

Erişim

info:eu-repo/semantics/openAccess

Tarih

2018

Yazar

Gulum, Mert
Kutlu Onay, Funda
Bilgin, Atilla

Üst veri

Tüm öğe kaydını göster

Özet

Nowadays, biodiesel and vegetable oils have received increasing attention as renewable clean alternative fuels to fossil diesel fuel because of decreasing petroleum reserves and increasing environmental concerns. However, the straight use of biodiesel and vegetable oils in pure form results in several operational and durability problems in diesel engines because of their higher viscosity than fossil diesel fuel. One of the most used methods for solving the high viscosity problem is to blend them with fossil diesel fuel or alcohol. The reliable viscosity and density data of various biodiesel-diesel-alcohol ternary blends or biodiesel-diesel binary blends are plentifully available in existing literature, however, there is still the scarcity of dependable measurement values on different biodiesel-diesel-vegetable oil ternary blends at various temperatures. Therefore, in this study, waste cooking oil biodiesel (ethyl ester) was produced, and it was blended with fossil diesel fuel and waste cooking oil at different volume ratios to prepare ternary blends. Viscosities and densities of the ternary blends were determined at different temperatures according to DIN 53015 and ISO 4787 standards, respectively. The variation in viscosity with respect to temperature and oil fraction and the change of density vs. temperature were evaluated, rational and exponential models were proposed for these variations, and these models were tested against the density and viscosity data measured by the authors, Nogueira et al. and Baroutian et al. by comparing them to Gupta et al. model, linear model, Cragoe model and ANN (artificial neural networks) previously recommended in existing literature.

Kaynak

ENVIRONMENTAL AND CLIMATE TECHNOLOGIES

Cilt

22

Sayı

1

Bağlantı

https://dx.doi.org/10.2478/rtuect-2018-0012
https://hdl.handle.net/20.500.12450/924

Koleksiyonlar

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: