Basit öğe kaydını göster

dc.contributor.authorOzturk, Ismail
dc.contributor.authorKilic, Recai
dc.date.accessioned2019-09-01T13:04:16Z
dc.date.available2019-09-01T13:04:16Z
dc.date.issued2018
dc.identifier.issn1007-5704
dc.identifier.issn1878-7274
dc.identifier.urihttps://dx.doi.org/10.1016/j.cnsns.2018.02.039
dc.identifier.urihttps://hdl.handle.net/20.500.12450/869
dc.descriptionWOS: 000429332800026en_US
dc.description.abstractIt is impossible to obtain chaotic behavior using conventional finite precision calculations on a digital platform. All such realizations are eventually periodic. Also, digital calculations of the periodic orbits are often erroneous due to round-offand truncation errors. Because of these errors, periodic orbits quickly diverge from the true orbit and they end up into one of the few cycles that occur for almost all initial conditions. Hence, digital calculations of chaotic systems do not represent the true orbits of the mathematically defined original system. This discrepancy becomes evident in the simulations of the binary shift chaotic maps like Bernoulli map or tent map. Although these systems are perfectly well defined chaotic systems, their digital realizations always converge to zero. In the literature, there are some studies which replace the least significant zero bits by random bits to overcome this problem. In this paper, we propose the algorithms using this simple method for digitally implementing binary shift chaotic maps. These algorithms are suitable for both software and hardware solutions, and they are also applicable with any random number generator or a repeated bit sequence. According to the type of the random number generator, either true periodic orbits or true chaotic orbits of the map are obtained. Moreover, it is shown that, utilizing topological conjugacies, obtained true orbits of binary shift chaotic maps can be used to calculate true orbits of other maps such as logistic and Chebyshev maps which are normally subject to round-offand truncation errors. The hardware implementations of binary shift chaotic maps, logistic map and Chebyshev maps have been realized on a Field Programmable Gate Array (FPGA) platform using the proposed algorithms. (c) 2018 Elsevier B.V. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherELSEVIER SCIENCE BVen_US
dc.relation.isversionof10.1016/j.cnsns.2018.02.039en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDynamical mapsen_US
dc.subjectTrue chaotic orbitsen_US
dc.subjectFPGAen_US
dc.subjectTopological conjugacyen_US
dc.titleDigitally generating true orbits of binary shift chaotic maps and their conjugatesen_US
dc.typearticleen_US
dc.relation.journalCOMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATIONen_US
dc.authoridOzturk, Ismail -- 0000-0001-9561-4651en_US
dc.identifier.volume62en_US
dc.identifier.startpage395en_US
dc.identifier.endpage408en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.department-temp[Ozturk, Ismail] Amasya Univ, Dept Elect & Elect Engn, TR-05100 Merkez, Amasya, Turkey -- [Kilic, Recai] Erciyes Univ, Dept Elect & Elect Engn, TR-38039 Kayseri, Turkeyen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster