Effects of whey protein and conjugated linoleic acid on acrolein-induced cardiac oxidative stress, mitochondrial dysfunction and dyslipidemia in rats
Özet
Acrolein is a ubiquitous environmental pollutant. Whey protein and conjugated linoleic acid are widely used weight-loss supplements. We aimed to evaluate blood lipid profiles, oxidative stress and mitochondrial bioenergetics function in hearts of rats treated with acrolein and/or the weight-loss supplements. The animals were orally gavaged with acrolein, whey protein, conjugated linoleic acid, acrolein + whey protein or acrolein + conjugated linoleic acid for six days per week during 30 days. Acrolein caused dyslipidemia and oxidative stress in red blood cells and haert mitochondria. Moreover, it caused dysfunction in mitochondrial bioenergetics by decreasing levels of oxidative phosphorylation enzymes, tricarboxylic acid cycle enzymes and ATP. Co-treatment with acrolein + whey protein and acrolein + conjugated linoleic acid ameliorated acrolein-induced oxidative stress and dysfunction in mitochondrial bioenergetics. This amelioration effect was more prominent in acrolein + conjugated linoleic acid group. Interestingly, co-treatment with acrolein + whey protein negatively affected some markers of cardiac injury such as creatinine kinase-MB, lactate dehydrogenase and homocysteine. Conjugated linoleic acid may also cause dyslipidemia because it increased the levels of triacylglycerol, low density lipoproteins and very low density lipoproteins. In conclusion, using some weight loss supplements such as whey protein may adversely affect the biochemical parameters related to cardiovascular system.