• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

HIC-net: A deep convolutional neural network model for classification of histopathological breast images

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2019

Yazar

Ozturk, Saban
Akdemir, Bayram

Üst veri

Tüm öğe kaydını göster

Özet

In this study, a convolutional neural network (CNN) model is presented to automatically identify cancerous areas on whole-slide histopathological images (WSI). The proposed WSI classification network (HIC-net) architecture performs window-based classification by dividing the WSI into a certain plane. In our method, an effective pre-processing step has been added for WSI for better predictability of image parts and faster training. A large dataset containing 30,656 images is used for the evaluation of the HIC-net algorithm. Of these images, 23,040 are used for training, 2560 are used for validation and 5056 are used for testing. HIC-net has more successful results than other state-of-art CNN algorithms with AUC score of 97.7%. If we evaluate the classification results of HIC-net using softmax function, HIC-net success rates have 96.71% sensitivity, 95.7% specificity, 96.21% accuracy, and are more successful than other state-of-the-art techniques which are used in cancer research. (C) 2019 Elsevier Ltd. All rights reserved.

Kaynak

COMPUTERS & ELECTRICAL ENGINEERING

Cilt

76

Bağlantı

https://dx.doi.org/10.1016/j.compeleceng.2019.04.012
https://hdl.handle.net/20.500.12450/765

Koleksiyonlar

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: