• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-class power quality disturbances classification by using ensemble empirical mode decomposition based SVM

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2011

Author

Yalcin T.
Ozgonenel O.
Kurt U.

Metadata

Show full item record

Abstract

This paper presents performance comparisons of Support Vector Machine (SVM) and different classification method for power quality disturbance classification. The first goal of this study is to investigate EEMD (ensemble empirical mode decomposition) performance and to compare it with classical EMD for feature vector extraction and selection of power quality disturbances. Features are extracted from the power electrical signals by using Hilbert Huang Transform (HHT). This technique is a combination of ensemble empirical mode decomposition (EEMD) and Hilbert transform (HT). The outputs of HT are instantaneous frequency (IF) and instantaneous amplitude (IA). Characteristic features are obtained from first IMFs', IF and IA. The ten features, i.e. mean, standard deviation, singular values, maxima and minima of IF and IA, are then calculated. These features are normalized and the inputs of SVM and other classifiers. © 2011 Chamber of Turkish Electric.

Source

ELECO 2011 - 7th International Conference on Electrical and Electronics Engineering

URI

https://hdl.handle.net/20.500.12450/684

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: