dc.contributor.author | Büyükaşık E. | |
dc.contributor.author | Türkmen E. | |
dc.date.accessioned | 2019-09-01T12:50:21Z | |
dc.date.available | 2019-09-01T12:50:21Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0041-5995 | |
dc.identifier.uri | https://dx.doi.org/10.1007/s11253-012-0579-3 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/680 | |
dc.description.abstract | Zöschinger studied modules whose radicals have supplements and called these modules radical supplemented. Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submodule containing the radical has a supplement. We prove that every (finitely generated) left module is an srs-module if and only if the ring is left (semi)perfect. Over a local Dedekind domain, srs-modules and radical supplemented modules coincide. Over a nonlocal Dedekind domain, an srs-module is the sum of its torsion submodule and the radical submodule. © 2012 Springer Science+Business Media, Inc. | en_US |
dc.language.iso | eng | en_US |
dc.relation.isversionof | 10.1007/s11253-012-0579-3 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Strongly radical supplemented modules | en_US |
dc.type | article | en_US |
dc.relation.journal | Ukrainian Mathematical Journal | en_US |
dc.identifier.volume | 63 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.startpage | 1306 | en_US |
dc.identifier.endpage | 1313 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department-temp | Büyükaşık, E., Department of Mathematics, Izmir Institute of Technology, Urla, Izmir, Turkey -- Türkmen, E., Department of Mathematics, Faculty of Art and Science, Amasya University, Amasya, Turkey | en_US |