Basit öğe kaydını göster

dc.contributor.authorBüyükaşık E.
dc.contributor.authorTürkmen E.
dc.date.accessioned2019-09-01T12:50:21Z
dc.date.available2019-09-01T12:50:21Z
dc.date.issued2012
dc.identifier.issn0041-5995
dc.identifier.urihttps://dx.doi.org/10.1007/s11253-012-0579-3
dc.identifier.urihttps://hdl.handle.net/20.500.12450/680
dc.description.abstractZöschinger studied modules whose radicals have supplements and called these modules radical supplemented. Motivated by this, we call a module strongly radical supplemented (briefly srs) if every submodule containing the radical has a supplement. We prove that every (finitely generated) left module is an srs-module if and only if the ring is left (semi)perfect. Over a local Dedekind domain, srs-modules and radical supplemented modules coincide. Over a nonlocal Dedekind domain, an srs-module is the sum of its torsion submodule and the radical submodule. © 2012 Springer Science+Business Media, Inc.en_US
dc.language.isoengen_US
dc.relation.isversionof10.1007/s11253-012-0579-3en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleStrongly radical supplemented modulesen_US
dc.typearticleen_US
dc.relation.journalUkrainian Mathematical Journalen_US
dc.identifier.volume63en_US
dc.identifier.issue8en_US
dc.identifier.startpage1306en_US
dc.identifier.endpage1313en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.department-tempBüyükaşık, E., Department of Mathematics, Izmir Institute of Technology, Urla, Izmir, Turkey -- Türkmen, E., Department of Mathematics, Faculty of Art and Science, Amasya University, Amasya, Turkeyen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster