dc.contributor.author | Türkmen B.N. | |
dc.date.accessioned | 2019-09-01T12:50:17Z | |
dc.date.available | 2019-09-01T12:50:17Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1787-2405 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/643 | |
dc.description.abstract | In this paper, we study modules with the properties (CRE) and (CREE), which are adapted Zöschinger's modules with the properties (E) and (EE). It is shown that: (1) a module M has the propery (CREE) if and only if every submodule of M has the propery (CRE); (2) a ring R is Rad-supplemented if and only if every left R-module has the propery (CRE); (3) over a commutative Von Neumann regular ring a module M has the propery (CRE) if and only if M is cofinitely injective. © 2013 Miskolc University Press. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cofinite extension | en_US |
dc.subject | Rad-supplement | en_US |
dc.subject | Semiperfect ring | en_US |
dc.subject | Von Neumann regular ring | en_US |
dc.title | Modules that have a rad-supplement in every cofinite extension | en_US |
dc.type | article | en_US |
dc.relation.journal | Miskolc Mathematical Notes | en_US |
dc.identifier.volume | 14 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 1059 | en_US |
dc.identifier.endpage | 1066 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department-temp | Türkmen, B.N., Amasya University, Faculty of Art and Science, Department of Mathematics, 05100, Amasya, Turkey | en_US |