Basit öğe kaydını göster

dc.contributor.authorSchoemann, Alexander M.
dc.contributor.authorMoore, E. Whitney G.
dc.contributor.authorYagiz, Gokhan
dc.date.accessioned2025-03-28T07:23:36Z
dc.date.available2025-03-28T07:23:36Z
dc.date.issued2024
dc.identifier.issn0020-7594
dc.identifier.issn1464-066X
dc.identifier.urihttps://doi.org/10.1002/ijop.13257
dc.identifier.urihttps://hdl.handle.net/20.500.12450/6153
dc.description.abstractMediation models are often conducted in psychology to understand mechanisms and processes of change. However, current best practices for handling missing data in mediation models are not always used by researchers. Missing data methods, such as full information maximum likelihood (FIML) and multiple imputation (MI), are best practice methods of handling missing data. However, FIML or MI are rarely used to handle missing data when testing mediation models, instead analyses used listwise deletion methods, the default in popular software. Compared to listwise deletion, the implementation of FIML or MI to handle missing data reduces parameter estimate bias, while maintaining the sample collected to maximise power and generalizability of results. In this tutorial, we review how to implement full-information maximum likelihood and MI using best practice methods of testing the indirect effect. We demonstrate how to implement these methods using both R and JASP, which are both free, open-source software programmes and provide online supplemental materials for these demonstrations. These methods are demonstrated using two example analyses, one using a cross-sectional mediation model and one using a longitudinal mediation model examining how student-athletes reported worry about COVID predicts their perceived stress, which in turn predicts satisfaction with life.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley & Sons Ltden_US
dc.relation.ispartofInternational Journal of Psychologyen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMediationen_US
dc.subjectMissing dataen_US
dc.subjectLongitudinalen_US
dc.subjectR softwareen_US
dc.titleHow and why to follow best practices for testing mediation models with missing dataen_US
dc.typereviewen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridSchoemann, Alexander/0000-0002-8479-8798
dc.authoridMoore, E. Whitney G./0000-0003-2482-1957
dc.relation.publicationcategoryDiğeren_US
dc.identifier.scopus2-s2.0-85206848628en_US
dc.identifier.doi10.1002/ijop.13257
dc.department-temp[Schoemann, Alexander M.] East Carolina Univ, Dept Psychol, 104 Rawl Bldg, Greenville, NC 27858 USA; [Moore, E. Whitney G.; Yagiz, Gokhan] East Carolina Univ, Dept Kinesiol, Greenville, NC USA; [Yagiz, Gokhan] Amasya Univ, Dept Physiotherapy & Rehabil, Amasya, Turkiye; [Yagiz, Gokhan] Tokyo Metropolitan Univ, Dept Phys Therapy, Hachioji, Japanen_US
dc.identifier.wosWOS:001372021500001en_US
dc.identifier.pmid39420243en_US
dc.snmzKA_WOS_20250328
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster