Analytical investigation of thermodynamic properties of power electronic semiconductor materials
Özet
Theoretical and experimental investigations are critical for accurately investigating the structure and physical properties of semiconductors, allowing their widespread use in power electronic devices. The heat capacities are important thermal properties needed to examine the electronic and electrical properties of device materials. The specific heat capacities of power electronic semiconductors, such as (GaN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{GaN}}$$\end{document}) gallium nitride, (SiC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{SiC}}$$\end{document}) silicon carbide, (Ga2O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{Ga}}_{2} {\text{O}}_{3}$$\end{document}) gallium oxide, and diamond, have been evaluated theoretically using the recently developed Einstein-Debye approximation. On the grounds of the Einstein-Debye approach, the derived general analytical expression for the calculation of the heat capacities is valid for the entire temperature range. The calculation results are compared with the previously available experimental and theoretical data for illustrating the correctness of the method. The evaluation and literature analysis confirm the effectiveness of the proposed method. As seen from the comparison with various results reported in the literaure, the results obtained from this approach are convenient and competitive.