Basit öğe kaydını göster

dc.contributor.authorTerzi, Ramazan
dc.contributor.authorKilic, Ahmet Enes
dc.contributor.authorKaraahmetoglu, Gokhan
dc.contributor.authorOzdemir, Okan Bilge
dc.date.accessioned2025-03-28T07:23:24Z
dc.date.available2025-03-28T07:23:24Z
dc.date.issued2025
dc.identifier.issn1863-1703
dc.identifier.issn1863-1711
dc.identifier.urihttps://doi.org/10.1007/s11760-024-03737-6
dc.identifier.urihttps://hdl.handle.net/20.500.12450/6104
dc.description.abstractBreast cancer stands as a prevalent malignancy affecting women globally, and a screening method, mammography, boasts reliability for early diagnosis. Nevertheless, interpretive errors during population screening may result in false negatives and positives. To address this, Computer-Aided Detection systems rooted in deep learning have emerged, aiming to reduce both false positive and negative predictions. This study introduces an open-source toolkit called The Digital Eye for Mammography (DEM) and addressing limitations in mammography screening for mass detection and classification. The DEM comprises 11 state-of-the-art object detection architectures and uses a meticulously labeled dataset. It serves as a transfer learning source, and provides ensemble of models from diverse deep-learning architectures, resulting in a more robust solution. Experiments conducted on widely-used datasets indicate that the DEM outperforms existing transfer learning sources by significant margins in terms of true positive rate (TPR). According to the experimental results, the DEM serves as a better transfer learning source for mass detection in pathology-proven InBreast and CBIS-DDSM datasets, presenting improvements 12% and 5% in TPR performance at 0.1 false positive per image (FPPI), respectively. Compared to literature, the DEM achieves lower FPPI values while maintaining higher sensitivity, indicating its potential usage as a transfer learning source. By employing ensemble strategies, the DEM produces more reliable outcomes in our KETEM dataset, reducing FPPI by 49% for BI-RADS 1-2 (Breast Imaging Reporting and Data System) and 46% for BI-RADS 4-5 compared to the best individual model while preserving TPR values. The DEM's results suggest its ability to attain better performance without requiring complex model hyperparameters optimization. The GitHub repository of the DEM project is publicly available on: https://github.com/ddobvyz/digitaleye-mammography.en_US
dc.language.isoengen_US
dc.publisherSpringer London Ltden_US
dc.relation.ispartofSignal Image and Video Processingen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMammographyen_US
dc.subjectDeep learningen_US
dc.subjectTransfer learning sourceen_US
dc.subjectModel ensembleen_US
dc.subjectMass detectionen_US
dc.subjectMass classificationen_US
dc.titleThe digital eye for mammography: deep transfer learning and model ensemble based open-source toolkit for mass detection and classificationen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.identifier.volume19en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85213719215en_US
dc.identifier.doi10.1007/s11760-024-03737-6
dc.department-temp[Terzi, Ramazan; Kilic, Ahmet Enes; Karaahmetoglu, Gokhan] Digital Transformat Off, Presidency Republ Turkiye, Ziaur Rahman Cad, TR-06550 Ankara, Turkiye; [Terzi, Ramazan] Amasya Univ, Seyhcui Mah Kemal Nehrozoglu Cad, TR-05100 Amasya, Turkiye; [Ozdemir, Okan Bilge] Artvin Coruh Univ, Merkez Yerleske, TR-08000 Artvin, Turkiyeen_US
dc.identifier.wosWOS:001386429800002en_US
dc.snmzKA_WOS_20250328
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster