• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Kerf and Groove Widths in CO2 Laser Cutting Process of PMMA Using Experimental and Machine Learning Methods

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2025

Yazar

Aydin, K.
Ugur, L.

Üst veri

Tüm öğe kaydını göster

Özet

Laser cutting has become a widely used technology in industrial production due to its high precision, fast processing capacity and widespread use in cutting many materials. Laser cutting of polymer materials is a widely preferred processing method. Polymer materials, especially thermoplastics and thermosets, have a wide range of applications and are used in various industries such as construction, automotive, packaging, medicine and electronics. Laser cutting of these materials has many advantages over other conventional cutting methods, as it cuts without contact and provides high precision and control. However, some difficulties are encountered during laser cutting. These difficulties include heat affected zone formation, kerf width at the cutting edge and surface roughness. Therefore, it is important to understand the effect of laser cutting on polymer materials and optimize the cutting parameters to improve the cutting quality. In this study, a comprehensive investigation was conducted to evaluate the effect of different laser cutting parameters (Focal plane, Cutting speed, Laser power) on the cutting quality of polymer materials. 27 different experimental trials were conducted with various combinations and the data obtained were analyzed using machine learning techniques such as artificial neural network (ANN) and adaptive neuro fuzzy inference system (ANFIS). The results of this study provide an important contribution towards determining the optimal cutting parameters for laser cutting of polymer materials and improving the cutting quality.

Bağlantı

https://doi.org/10.1007/s40799-025-00786-5
https://hdl.handle.net/20.500.12450/6088

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: