Basit öğe kaydını göster

dc.contributor.authorAydemir, Salih Berkan
dc.contributor.authorOnay, Funda Kutlu
dc.contributor.authorYalcin, Emre
dc.date.accessioned2025-03-28T07:23:19Z
dc.date.available2025-03-28T07:23:19Z
dc.date.issued2024
dc.identifier.issn1746-8094
dc.identifier.issn1746-8108
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2024.106631
dc.identifier.urihttps://hdl.handle.net/20.500.12450/6077
dc.description.abstractIn neuro-oncology, the precise segmentation of brain tumors from Magnetic Resonance Images is crucial for diagnosis, treatment planning, and monitoring disease progression. Accurate segmentation helps determine the tumor's size, location, and growth potential, which is essential for formulating effective treatment strategies. In response to this challenge, we developed a novel approach using Chaotic Local Search-Enhanced Differential Evolution (CJADE). CJADE, particularly its variant CJADE-M, which employs chaotic maps selected through a probability-based approach, has proven effective in optimizing brain tumor segmentation. Our study shows that CJADE-M outperforms traditional metaheuristic algorithms on various evaluation metrics. We further enhanced CJADE-M with an entropy-based hybrid objective function, which improved accuracy and reduced computational time in tumor segmentation compared to conventional methods like Minimum Cross-Entropy and Kapur. This makes our method suitable for real-time medical imaging analysis. Our findings indicate that CJADE-M, equipped with the hybrid objective function, achieves superior segmentation performance for both benign lobulated and malignant irregular tumors across metrics such as PSNR, FSIM, QILV, and HPSI. By providing a more accurate and efficient tool, our approach can significantly enhance the outcomes of brain tumor diagnosis and treatment, improving patient care in neuro-oncology.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.ispartofBiomedical Signal Processing and Controlen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDifferential evolutionen_US
dc.subjectHybrid objective functionen_US
dc.subjectBrain tumor segmentationen_US
dc.subjectMetaheuristic optimizationen_US
dc.subjectChaotic mapsen_US
dc.titleEmpowered chaotic local search-based differential evolution algorithm with entropy-based hybrid objective function for brain tumor segmentationen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridKUTLU ONAY, Funda/0000-0002-8531-4054
dc.authoridaydemir, salih berkan/0000-0003-0069-3479
dc.authoridYalcin, Emre/0000-0003-3818-6712
dc.identifier.volume96en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85198272828en_US
dc.identifier.doi10.1016/j.bspc.2024.106631
dc.department-temp[Aydemir, Salih Berkan; Onay, Funda Kutlu] Amasya Univ, Comp Engn Dept, TR-05100 Amasya, Turkiye; [Yalcin, Emre] Sivas Cumhuriyet Univ, Comp Engn Dept, TR-58140 Sivas, Turkiyeen_US
dc.identifier.wosWOS:001281921100001en_US
dc.snmzKA_WOS_20250328
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster