• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of optimal machining Monel 400 superalloy considering carbon emissions using FEM, regression and ANN methods

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2024

Yazar

Aydin, Kutay

Üst veri

Tüm öğe kaydını göster

Özet

In this study, the optimal machining parameters for the machining of Monel 400 superalloy considering carbon emission were investigated. Monel 400 stands out among nickel alloys with its resistance to high corrosive environments. First, the Johnson-Cook material model for Monel 400 was developed for FEM simulations. Then, FEM simulations were performed using seven different machining parameters, including cutting and geometric, and validated with experimental results in the literature. The obtained FEM results were trained and predicted by regression and Artificial Neural Network (ANN) analysis. With this study, the Johnson-Cook material model of Monel 400 superalloy and the optimal machining parameters considering carbon emission with different cutting and geometric machining parameters are provided to the literature. As a result, it was determined that the most effective machining parameters in terms of cutting force were 139.04% increase in depth of cut, 74.23% increase in feed and 9.57% decrease in side rake angle. In terms of carbon emission, the most effective machining parameters were found to be -338.9g reduction in depth of cut, -294.3g reduction in feed rate and -171.9g reduction in cutting speed. In terms of training and prediction of FEM results, it was observed that the regression model was 89.19% for cutting force data and 95.39% for carbon emission, while the ANN model was 98.081% for cutting force data and 99.978% for carbon emission. Optimal machining parameters were determined by ANN method. The optimal machining parameters (cutting speed, feed, cutting depth, side rake angle, back rake angle, lead angle and nose radius) of Monel 400 superalloy with the lowest cutting force and carbon emission were determined as 100 m/min, 0.15mm/rev, 0.375 mm, 0 degrees, 5 degrees, 0 degrees, 0 degrees, 0 degrees, 0.4 mm and 100 m/min, 0.2mm/rev, 0.25 mm, -5 degrees, 5 degrees, 0 degrees, 0.8 mm, respectively.

Cilt

447

Bağlantı

https://doi.org/10.1016/j.jclepro.2024.141616
https://hdl.handle.net/20.500.12450/6060

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: