• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Crystal structures of biogenic amine derivative Schiff bases, and these compounds modulatory effect on cell cycle arrest and cell death in lung cancer cells

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2024

Author

Senkuytu, Elif
Davarci, Derya
Mesci, Seda
Yazgan, Burak

Metadata

Show full item record

Abstract

Cancer continues to be a global health problem, and this problem requires the development of targeted anticancer agents. Syntheses of different derivatives of Schiff bases have attracted serious attention in cancer research due to the potential of this group of compounds as anticancer agents. For this purpose, the biogenic amine derivative Schiff bases (Schf 1-3) were synthesised. The solid-state structure and geometry of Schf-2 and Schf-3 were determined using single crystal X-ray structural analysis for the first time in this study. The isolated compounds were characterised by NMR (1H and 13C) spectroscopy, mass analysis, and single crystal X-ray crystallography. The cytotoxic activities of these compounds against lung cancer and normal lung cells were determined by the WST-8 assay. In addition, mRNA expression levels of cell death, cell cycle, and ER stress related genes were determined by qPCR. Besides, ER stress, apoptosis, and related signaling proteins were determined by ELISA. Moreover, necrosis, early and late apoptosis, and cell cycle were determined by Flow cytometry. The most effective % viability activity is Schf-1, and IC50 value are 60.22% (27.73 mu M) (LogIC50:1.443) in A549 cells. All compounds increased in MAPK gene expressions, also, gene expressions of HSP27, HSP40, HSP60, HSP70, HSP90 and AKT decreased by these compounds in A549 cells. Moreover, GRP78, Caspase-3, p-AKT, and MAPK protein levels were upregulated by these compounds. Furthermore, cell cycle, necrosis, and apoptosis are regulated by these molecules. Our findings indicate that these compounds have potential properties that suppress HSP genes and activate ER stress related apoptotic cell death and are notable for drug-improving studies.

Volume

1312

URI

https://doi.org/10.1016/j.molstruc.2024.138418
https://hdl.handle.net/20.500.12450/6049

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: