• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel antipyrine substituted 4-thiazolidinones: Synthesis, DNA binding and topoisomerase inhibition activities, and in-silico studies

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2024

Author

Bagdatli, Emine
Mesci, Seda
Yildirim, Tuba

Metadata

Show full item record

Abstract

In this study, we report the synthesis and characterization of novel 4-thiazolidinones containing antipyrine (3ae) derived from the starting compounds of Schiff bases (2a-e). The Schiff bases were synthesized using aldehydes of natural origin, such as citronellal, cuminaldehyde, 2-thiazolecarboxaldehyde, 5-methylfurfural, and syringaldehyde. Their FTIR spectra revealed the enol- tautomeric solid-state structures of compounds 3b and 3d. The pUC18 plasmid DNA binding specificity and capacity of the compounds to catalytically generate topoisomerase I activity were also examined using agarose gel electrophoresis. The compounds induced changes in DNA mobility and showed a topoisomerase I inhibitory effect at all doses. 4-Thiazolidinones had a higher affinity in DNA and topoisomerase I than the Schiff bases. DNA binding and topoisomerase I activities were most effective at low concentration (6 mu M) for the compounds of Schiff bases 2a, d, and 4-thiazolidinones 3a, d. Furthermore, this study presents computational methods for addressing the molecules' drug-like properties. 2a, d, and 3a, d Compounds were used as representative of the most bioactive among the newly synthesized molecules in insilico studies. The web tools of ADMETlab, SwissADME, OSIRIS, and the BOILED-Egg method were used to conduct in-silico biological studies involving ADME prediction, BBB penetration, gastrointestinal absorption, and toxicity studies. The ADME profile of the query compounds gets within the range of applicability and is at an appropriate level. In-silico studies revealed that compounds 2a, d, and 3a, d are neither hERG blockers nor AMES toxic. However, compounds 2a and 3a have hepatotoxicity.

Volume

1318

URI

https://doi.org/10.1016/j.molstruc.2024.139192
https://hdl.handle.net/20.500.12450/6047

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: