Basit öğe kaydını göster

dc.contributor.authorAydin, Kutay
dc.date.accessioned2025-03-28T07:23:04Z
dc.date.available2025-03-28T07:23:04Z
dc.date.issued2024
dc.identifier.issn0954-4828
dc.identifier.issn1466-1837
dc.identifier.urihttps://doi.org/10.1080/09544828.2024.2311063
dc.identifier.urihttps://hdl.handle.net/20.500.12450/5999
dc.description.abstractIn this study, training and prediction performance on turning data were investigated with ChatGPT, which is a popular AI platform nowadays. In this context, the resultant cutting forces obtained as a result of different turning simulations with FEM, training and estimation were made using regression, ANN, ANFIS methods. Using the same data, training and predictions were made with ChatGPT-3 with different prediction algorithms. As a result, the lowest average error rates in the predictions made with the training data; 2E-6% for ANFIS in prediction methods and 0.19% for ANN1 conversation in GPT-3 were obtained. The lowest average error rates in the predictions made with the test data; 5.41% for regression using logarithmic Box-Cox transformation in prediction methods, and 22.66% for ANN1 conversation in GPT-3 were achieved. The highest prediction performance in GPT-3 conversations was observed when GPT-3 was asked to make predictions with ANN algorithm on both training and test data. As a result, GPT-3 has not yet generated acceptable solutions for machining problems due to its low performance in predicting test data. However, due to the fast advancement of artificial intelligence technologies, it is obvious that solutions to this and more engineering problems will be generated in near future.Highlights Prediction with ChatGPT-3Prediction performance of artificial intelligenceCutting force prediction of turning operationen_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofJournal of Engineering Designen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectChatGPTen_US
dc.subjectmachiningen_US
dc.subjectregressionen_US
dc.subjectANNen_US
dc.subjectANFISen_US
dc.subjectpredictionen_US
dc.titleComparison of regression, ANN, ANFIS, and ChatGPT prediction of turning cutting forceen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridAYDIN, KUTAY/0000-0003-3614-4877
dc.identifier.volume35en_US
dc.identifier.issue3en_US
dc.identifier.startpage338en_US
dc.identifier.endpage357en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.institutionauthorAydin, Kutay
dc.identifier.scopus2-s2.0-85183855732en_US
dc.identifier.doi10.1080/09544828.2024.2311063
dc.department-temp[Aydin, Kutay] Amasya Univ, Fac Engn, Dept Mech Engn, Amasya, Turkiye; [Aydin, Kutay] Amasya Univ, Fac Engn, Dept Mech Engn, TR-05100 Amasya, Turkiyeen_US
dc.identifier.wosWOS:001153244900001en_US
dc.snmzKA_WOS_20250328
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster