dc.contributor.author | Oten, Erol | |
dc.contributor.author | Bilecik, Nilufer Ayguen | |
dc.contributor.author | Ugur, Levent | |
dc.date.accessioned | 2025-03-28T07:23:03Z | |
dc.date.available | 2025-03-28T07:23:03Z | |
dc.date.issued | 2024 | |
dc.identifier.issn | 1025-5842 | |
dc.identifier.issn | 1476-8259 | |
dc.identifier.uri | https://doi.org/10.1080/10255842.2024.2417200 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/5995 | |
dc.description.abstract | Carpal tunnel syndrome (CTS) is a common condition diagnosed using physical exams and electromyography (EMG) data. This study aimed to classify CTS severity using machine learning techniques. EMG data from 154 patients, including measurements of motor and sensory latency, velocity, and amplitude, were used to form a six-dimensional feature space. Classifiers such as DT, LDA, NB, SVM, k-NN, and ANN were applied, and the feature space was reduced using ANOVA, MRMR, Relieff, and PCA. The DT classifier with ANOVA feature selection showed the best performance for both full and reduced feature spaces. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.ispartof | Computer Methods in Biomechanics and Biomedical Engineering | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Carpal Tunnel Syndrome | en_US |
dc.subject | Computer Aided Diagnosis Dystem | en_US |
dc.subject | Machine Learning | en_US |
dc.subject | Classification | en_US |
dc.title | Use of machine learning methods in diagnosis of carpal tunnel syndrome | en_US |
dc.type | article | en_US |
dc.department | Amasya Üniversitesi | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.scopus | 2-s2.0-85207460182 | en_US |
dc.identifier.doi | 10.1080/10255842.2024.2417200 | |
dc.department-temp | [Oten, Erol] Amasya Univ, Dept Phys Med & Rehabil, Fac Med, Amasya, Turkiye; [Bilecik, Nilufer Ayguen] Adana City Training & Res Hosp, Dept Phys Therapy & Rehabil, Adana, Turkiye; [Ugur, Levent] Amasya Univ, Fac Engn, Dept Mech Engn, Amasya, Turkiye | en_US |
dc.identifier.wos | WOS:001343855000001 | en_US |
dc.identifier.pmid | 39463309 | en_US |
dc.snmz | KA_WOS_20250328 | |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |