Basit öğe kaydını göster

dc.contributor.authorOten, Erol
dc.contributor.authorBilecik, Nilufer Ayguen
dc.contributor.authorUgur, Levent
dc.date.accessioned2025-03-28T07:23:03Z
dc.date.available2025-03-28T07:23:03Z
dc.date.issued2024
dc.identifier.issn1025-5842
dc.identifier.issn1476-8259
dc.identifier.urihttps://doi.org/10.1080/10255842.2024.2417200
dc.identifier.urihttps://hdl.handle.net/20.500.12450/5995
dc.description.abstractCarpal tunnel syndrome (CTS) is a common condition diagnosed using physical exams and electromyography (EMG) data. This study aimed to classify CTS severity using machine learning techniques. EMG data from 154 patients, including measurements of motor and sensory latency, velocity, and amplitude, were used to form a six-dimensional feature space. Classifiers such as DT, LDA, NB, SVM, k-NN, and ANN were applied, and the feature space was reduced using ANOVA, MRMR, Relieff, and PCA. The DT classifier with ANOVA feature selection showed the best performance for both full and reduced feature spaces.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.ispartofComputer Methods in Biomechanics and Biomedical Engineeringen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCarpal Tunnel Syndromeen_US
dc.subjectComputer Aided Diagnosis Dystemen_US
dc.subjectMachine Learningen_US
dc.subjectClassificationen_US
dc.titleUse of machine learning methods in diagnosis of carpal tunnel syndromeen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.scopus2-s2.0-85207460182en_US
dc.identifier.doi10.1080/10255842.2024.2417200
dc.department-temp[Oten, Erol] Amasya Univ, Dept Phys Med & Rehabil, Fac Med, Amasya, Turkiye; [Bilecik, Nilufer Ayguen] Adana City Training & Res Hosp, Dept Phys Therapy & Rehabil, Adana, Turkiye; [Ugur, Levent] Amasya Univ, Fac Engn, Dept Mech Engn, Amasya, Turkiyeen_US
dc.identifier.wosWOS:001343855000001en_US
dc.identifier.pmid39463309en_US
dc.snmzKA_WOS_20250328
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakPubMeden_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster