dc.contributor.author | Türkmen B.N. | |
dc.date.accessioned | 2019-09-01T12:50:12Z | |
dc.date.available | 2019-09-01T12:50:12Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1787-2405 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/597 | |
dc.description.abstract | Let R be a ring and M be an R-module. M is said to be an E*-module (respectively, an EE*-module) if M has a supplement (respectively, ample supplements) in every coatomic extension N, i.e. N/M is coatomic. We prove that if a module M is an EE*-module, every submodule of M is an E*-module, and then we show that a ring R is left perfect iff every left R-module is an E*-module iff every left R-module is an EE*-module. We also prove that the class of E*-modules is closed under extension. In addition, we give a new characterization of left V-rings by cofinitely injective modules. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | University of Miskolc | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | (semi)perfect ring | en_US |
dc.subject | Coatomic extension | en_US |
dc.subject | E*-module | en_US |
dc.subject | EE*-module | en_US |
dc.subject | Supplement | en_US |
dc.title | Modules that have a supplement in every coatomic extension | en_US |
dc.type | article | en_US |
dc.relation.journal | Miskolc Mathematical Notes | en_US |
dc.identifier.volume | 16 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 543 | en_US |
dc.identifier.endpage | 551 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department-temp | Türkmen, B.N., Amasya University, Department of Mathematics, Ipekkoy, Amasya, 05100, Turkey | en_US |