• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SILVER AND ZINC NANOPARTICLES BIOSYNTHESIS USING LAUREL EXTRACT AND INVESTIGATION OF THE PHOTOCATALYTIC PROPERTIES

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/openAccess

Date

2024

Author

Tas, Recep
Koroglu, Ebru
Karakus, Ahmet
Bulbul, Ali Savas
Tas, Nilay Akkus

Metadata

Show full item record

Abstract

Metal nanoparticles that are widely studied in optoelectronics, catalysis, medicine, and sensors offer remarkable optical and electronic properties. To address the cost and environmental concerns associated with their synthesis, this study employs an environmentally friendly method using Laureus nobilis extract to produce silver and zinc nanoparticles, which are prominent in nanotechnology. This study includes investigations of factors such as reaction time, AgNO3/laurel ratio, Zn(Ac)2H2O/laurel ratio and temperature in nanoparticle biosynthesis to optimize the process. The next stage was set to evaluate the photocatalytic performance of these nanoparticles, specifically against the methylene blue dye under dark and UV light conditions. Parameters such as pollutant decomposition, degradation rate, catalyst stability, and nanoparticle recovery were analysed. Structural characterization of the obtained nanoparticles was performed using UV-Vis, FTIR, SEM, and XRD techniques. The photocatalytic results showed significant degradation percentages for LB-AgNP (silver nanoparticles synthesized with Laureus nobilis extract) (97.5%) and LB-ZnNP (zinc nanoparticles synthesized with Laureus nobilis extract) (90.9%). LB-ZnNP showed superior performance. Therefore, LB-AgNP and LB-ZnNP are promising photocatalysts for water purification and the elimination of toxic organic pollutants.

Volume

19

Issue

1

URI

https://doi.org/10.19261/cjm.2024.1113
https://hdl.handle.net/20.500.12450/5884

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: