Basit öğe kaydını göster

dc.contributor.authorOkten, Korhan
dc.contributor.authorOrnek, Bulent Nafi
dc.contributor.authorBiyikoglu, Atilla
dc.date.accessioned2025-03-28T07:22:44Z
dc.date.available2025-03-28T07:22:44Z
dc.date.issued2025
dc.identifier.issn1042-346X
dc.identifier.issn1938-1387
dc.identifier.urihttps://doi.org/10.2351/7.0001671
dc.identifier.urihttps://hdl.handle.net/20.500.12450/5868
dc.description.abstractLaser powder bed fusion (L-PBF) fabricates components by melting layers of metal powder. Consequently, it has the potential to induce interparticle air gaps or generate unpredictable stresses. As such, understanding temperature distribution and predicting the melt pool based on process parameters are essential. While numerous numerical studies in the literature aim to determine these parameters, these numerical estimation methods often demand extensive computational time and powerful processors. This study introduces a new analytical model and a solution method, offering a significantly faster and more precise solution compared to numerical approaches. Furthermore, the developed model allows the identification of liquid and solid phase regions within the part during production, along with insights into the phase region changes over time. Eigenfunction expansion, separation of variables, and variable transformation methods were employed in the analytical solution of the model equations. Results obtained from this method have been validated by experimental studies available in the literature. By utilizing the derived solution function, the L-PBF process was parametrically investigated, revealing temperature distributions and melt pool geometries. The parametric study focused on the laser power, spot size, and powder layer thicknesses as variable parameters. The study determined that a 50 W increase in laser power raises the maximum melt pool temperature by an average of 800 K, and laser power has been identified as the most influential parameter affecting temperature distribution and melt pool geometry.en_US
dc.language.isoengen_US
dc.publisherAip Publishingen_US
dc.relation.ispartofJournal of Laser Applicationsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectlaser powder bed fusionen_US
dc.subjectanalytical modelen_US
dc.subjecttemperature distributionen_US
dc.subjectmelt pool geometryen_US
dc.titleDevelopment of an analytical model to investigate temperature distribution and melt geometry in the laser powder bed fusion process under different operating parametersen_US
dc.typearticleen_US
dc.departmentAmasya Üniversitesien_US
dc.authoridokten, korhan/0000-0002-8728-8785
dc.authoridBiyikoglu, Atilla/0000-0002-2133-6721
dc.identifier.volume37en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.2351/7.0001671
dc.department-temp[Okten, Korhan] Amasya Univ, Engn Fac, Mech Engn, TR-05000 Amasya, Turkiye; [Ornek, Bulent Nafi] Amasya Univ, Engn Fac, Comp Engn, TR-05000 Amasya, Turkiye; [Biyikoglu, Atilla] Gazi Univ, Engn Fac, Mech Engn, TR-06510 Ankara, Turkiyeen_US
dc.identifier.wosWOS:001368879500002en_US
dc.snmzKA_WOS_20250328
dc.indekslendigikaynakWeb of Scienceen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster