• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Rektörlüğe Bağlı Birimler
  • Öksüz Yayınları
  • View Item
  •   DSpace Home
  • Rektörlüğe Bağlı Birimler
  • Öksüz Yayınları
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of Pulsatile Flow on Phosphorylcholine Coated Oxygenator and Arterial Filter

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/openAccess

Date

2022

Author

Keskin, Gökhan
Ulus, A. Tulga
Güray, Tuna
Ürpermez, Ece
Özyalçın, Sertan
Haberal, Orhan Erdem
Kocakulak, Mustafa

Metadata

Show full item record

Abstract

Objective: We aimed to compare the effects of pulsatile/nonpulsatile flow on phosphorylcholine coated (PC) oxygenator fibers, arterial filters by using scanning electron microscope (SEM). Methods: Eleven patients were randomly divided into two groups, as; nonpulsatile and pulsatile flow groups (NP and P groups) by using PC oxygenators. The oxygenator fiber samples were examined under SEM to compare the thickness of absorbed blood proteins and amount of blood cells on the surface of oxygenators. Arterial filters were also analysed by SEM regarding the captured blood elements or particles. Results: The mean fiber thickness from the axial images were calculated as 46.9m and 47.6 m at group P and NP respectively which is statistically insignificant. Evaluation of the blood samples that were extracted from the arterial filter bring out higher amount of fibrin network and blood cells on fibers at group NP. Conclusion: We concluded that there is lesser amount of blood components on the fibers of arterial filter at pulsatile flow. Coating of oxygenators is beneficial in case of surface biocompatibility and pulsatile perfusion develops lower amount of blood elements on arterial filter.
 
Objective: We aimed to compare the effects of pulsatile/nonpulsatile flow on phosphorylcholine coated (PC) oxygenator fibers, arterial filters by using scanning electron microscope (SEM). Methods: Eleven patients were randomly divided into two groups, as; nonpulsatile and pulsatile flow groups (NP and P groups) by using PC oxygenators. The oxygenator fiber samples were examined under SEM to compare the thickness of absorbed blood proteins and amount of blood cells on the surface of oxygenators. Arterial filters were also analysed by SEM regarding the captured blood elements or particles. Results: The mean fiber thickness from the axial images were calculated as 46.9 m and 47.6 m at group P and NP respectively which is statistically insignificant. Evaluation of the blood samples that were extracted from the arterial filter bring out higher amount of fibrin network and blood cells on fibers at group NP. Conclusion: We concluded that there is lesser amount of blood components on the fibers of arterial filter at pulsatile flow. Coating of oxygenators is beneficial in case of surface biocompatibility and pulsatile perfusion develops lower amount of blood elements on arterial filter.
 

Issue

34

URI

https://hdl.handle.net/20.500.12450/5759

Collections

  • Öksüz Yayınları [1372]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: