dc.contributor.author | Türkmen B.N. | |
dc.contributor.author | Türkmen E. | |
dc.date.accessioned | 2019-09-01T12:50:08Z | |
dc.date.available | 2019-09-01T12:50:08Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1221-8421 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/548 | |
dc.description.abstract | In this paper, over an arbitrary ring we define the notion of weakly radical supplemented modules (or briefly wrs-module), which is adapted from Zöschinger’s radical supplemented modules over a discrete valuation ring (DVR), and obtain the various properties of these modules. We prove that a wrs-module having a small radical is weakly supplemented. Moreover, we show that a ring R is left perfect if and only if every left R-module is wrs. Also, we prove that every wrs-module over a DVR is radical supplemented. © 2017, Sciendo. All rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Sciendo | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | (weak) supplement | en_US |
dc.subject | Perfect ring | en_US |
dc.subject | Radical | en_US |
dc.title | On a generalization of weakly supplemented modules | en_US |
dc.type | article | en_US |
dc.relation.journal | Analele Stiintifice ale Universitatii Al I Cuza din Iasi - Matematica | en_US |
dc.identifier.volume | 63 | en_US |
dc.identifier.issue | F2 | en_US |
dc.identifier.startpage | 441 | en_US |
dc.identifier.endpage | 448 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department-temp | Türkmen, B.N., Amasya University, Faculty of Art and Science, Amasya, Turkey -- Türkmen, E., Amasya University, Faculty of Art and Science, Amasya, Turkey | en_US |