Basit öğe kaydını göster

dc.contributor.authorÖztürk Ş.
dc.contributor.authorAkdemir B.
dc.date.accessioned2019-09-01T12:50:06Z
dc.date.available2019-09-01T12:50:06Z
dc.date.issued2018
dc.identifier.issn1877-0509
dc.identifier.urihttps://dx.doi.org/10.1016/j.procs.2018.05.057
dc.identifier.urihttps://hdl.handle.net/20.500.12450/526
dc.description2018 International Conference on Computational Intelligence and Data Science, ICCIDS 2018 -- 7 April 2018 through 8 April 2018 --en_US
dc.description.abstractClassification of histopathologic images and identification of cancerous areas is quite challenging due to image background complexity and resolution. The difference between normal tissue and cancerous tissue is very small in some cases. So, the features of the tissue patches in the image have key importance for automatic classification. Using only one feature or using a few features leads to poor classification results because of the small difference between the textures. In this study, the classification results are compared using different feature extraction algorithms that can extract various features from histopathological image texture. For this study, GLCM, LBP, LBGLCM, GLRLM and SFTA algorithms which are successful feature extraction algorithms have been chosen. The features obtained from these methods are classified with SVM, KNN, LDA and Boosted Tree classifiers. The most successful feature extraction algorithm for histopathological images is determined and the most successful classification algorithm is determined. © 2018 The Authors. Published by Elsevier Ltd.en_US
dc.language.isoengen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionof10.1016/j.procs.2018.05.057en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectfeature extractionen_US
dc.subjectGLCMen_US
dc.subjectGLRLMen_US
dc.subjecthistopathological imageen_US
dc.subjectKNNen_US
dc.subjectLBGLCMen_US
dc.subjectLBPen_US
dc.subjectLDAen_US
dc.subjectSFTAen_US
dc.subjectSVMen_US
dc.titleApplication of Feature Extraction and Classification Methods for Histopathological Image using GLCM, LBP, LBGLCM, GLRLM and SFTAen_US
dc.typeconferenceObjecten_US
dc.relation.journalProcedia Computer Scienceen_US
dc.identifier.volume132en_US
dc.identifier.startpage40en_US
dc.identifier.endpage46en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.department-tempÖztürk, Ş., Amasya University, Amasya, 05000, Turkey -- Akdemir, B., Selçuk University, Konya, 42000, Turkeyen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster