Basit öğe kaydını göster

dc.contributor.authorÖztürk Ş.
dc.contributor.authorAkdemir B.
dc.date.accessioned2019-09-01T12:50:06Z
dc.date.available2019-09-01T12:50:06Z
dc.date.issued2018
dc.identifier.issn1877-0509
dc.identifier.urihttps://dx.doi.org/10.1016/j.procs.2018.05.166
dc.identifier.urihttps://hdl.handle.net/20.500.12450/525
dc.description2018 International Conference on Computational Intelligence and Data Science, ICCIDS 2018 -- 7 April 2018 through 8 April 2018 --en_US
dc.description.abstractIn this study, classification performance of histopathological images which are processed by pre-processing algorithms using convolutional neural network structure is examined. The images are divided into four different pre-processing classes with their original state and processed with three different techniques. These classes are; original, normal pre-processing, other normal pre-processing and over pre-processing. Histopathological images of these four classes include cancerous and non-cancerous image patches. For these image classes, cancer patch classification is done using the same convolutional neural network structure. In this view, pre-processing effects on the classification success of the convolutional neural network is examined. For the normal pre-processing algorithm, background noise reduction and cell enhancement are applied. For over pre-processing, thresholding and morphological operations are applied in addition to normal preprocessing operations. At the end of the experiments, the most successful classification results are produced with the normal pre-processing algorithms. This is why the meaningful features of the image are left for the CNN structure that automatically learns the feature. The over pre-processing algorithm removes most of these important features from the image. © 2018 The Authors. Published by Elsevier Ltd.en_US
dc.language.isoengen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionof10.1016/j.procs.2018.05.166en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectclassificationen_US
dc.subjectCNNen_US
dc.subjectconvolutional neural networksen_US
dc.subjecthistopathological imageen_US
dc.subjectpreprocessingen_US
dc.titleEffects of Histopathological Image Pre-processing on Convolutional Neural Networksen_US
dc.typeconferenceObjecten_US
dc.relation.journalProcedia Computer Scienceen_US
dc.identifier.volume132en_US
dc.identifier.startpage396en_US
dc.identifier.endpage403en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.contributor.department-tempÖztürk, Ş., Amasya University, Amasya, 05000, Turkey -- Akdemir, B., Selçuk University, Konya, 42000, Turkeyen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster